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Abstract. In these notes, I briefly touch upon some analytic, geometric and
topological properties of metric measure spaces with weak lower Ricci curva-
ture bounds that my collaborators and I have observed in recent years.
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1. Introduction

Studying less regular distance structures than Riemannian manifolds actually
dates back to Riemann himself. He alluded to the definition what we now call
Finslerian manifolds. This is still in the realm of starting from geometric objects
that are defined in terms of infinitesimals (i.e. Riemannian or Finslerian metrics),
the microscopic realm. Another perspective would be to start from a metric space
(perhaps equipped with a measure) and study important geometric quantities –
such as curvature – by merely looking at the properties of the distance function
and measure, this, in contrast, is the macroscopic point of view.

The latter approach in the Riemannian geometry is nicely tied to the former
by comparison theorems; based on which, one then is able to make sense of metric
spaces with weak sectional curvature bounds (mainly attributed to Aleksandrov and
Cartan-Aleksandrov-Toponogov). Note that (pointed) Gromov-Hausdorff limits of
manifolds with uniform sectional curvature bounds give rise to the aforementioned
spaces with the same weak curvature bounds; so such spaces describe what happens
at the boundary of existence of Riemannian manifolds with curvature bounds. If
one also employs the measure transportation, one can get to the notions of metric
measure spaces with weak lower (and also upper) Ricci curvature bounds (the so-
called Sturm-Lott-Villani bounds).

In these notes, we are concerned with metric measure spaces with weak lower
Ricci curvature bounds that are also infinitesimally Hilbertian (the Riemannian
feature) also known as RCD spaces and will mention some analytic, geometric and
topological rigidity properties that they share with good old Riemannian manifolds.
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2 SAJJAD LAKZIAN

2. Preliminaries

In what follows, the primary objects of study are triples (X, d,m), a Polish
metric space (complete and separable) that is geodesic equipped with a locally
finite Borel measure. Also consider the space of probability measures that are
absolutely continuous with respect to m and with finite second moment, P2(X).

Note that L2-Wasserstein distance between probability measures turns the space
of all probability measures with finite second moments into a complete geodesic
space. Recall relative entropy which is the negative of the well known Boltzmann
entropy.

Definition 2.1 ((dimension-less) Curvature-dimension conditions). We say X sat-
isfies CD(K,∞) conditions if for any two probability measures µ0 and µ1, the rela-
tive entropy is K-convex along a geodesic (consisting of probability measures) con-
necting the two.

All complete Riemannian manifolds with Ric ≥ K satisfy CD(K,∞) as well as all
Finsler manifolds whose dimension-free weighted Ricci curvature is bounded below
by K. There is also the more involved notion of CD(K,N) spaces (using Rényi
entropy instead) that restricts the Hausdorff dimension of X to be bounded above
by N . Such convexity properties and their ties to geometry were brought up to
light in the seminal works of Sturm [11, 12] and Lott-Villani [8].

Recall by the Cheeger-Colding theory, nontrivial Finsler manifolds cannot arise
as Ricci limit spaces and a characteristic property of non-trivial Finsler manifolds is
that their W1,2 Sobolev spaces fail to be Hilbert spaces; thus, in order to single out
only “Riemannian objects” (what could arise as limits of manifolds with uniform
lower Ricci bounds) in the big class of CD(K,N) spaces, one needs to further impose
the infinitesimal Hilbertianity condition and this gives rise to RCD metric measure
spaces (“R” for Riemannian) i.e. spaces satisfying “CD” whose W1,2 Sobolev spaces
are Hilbert. Making this rigorous, requires a careful definition and analysis of
Cheeger-Dirichlet energy functional in this singular setting.

Let us just list some important facts about RCD spaces:

• Riemannian manifolds, Aleksandrov spaces, Bakry-Émery manifolds (also
called smooth measure spaces) and products, direct limits, fixed point free
quotients by isometries of such spaces are all examples of RCD spaces;

• RCD spaces are essentially non-branching (recently a proof of non-branching
property is suggested);

• Among other involved calculus developed for such spaces, one can perform
first and second order calculus on RCD spaces i.e. inner products of gra-
dients and Hessians can be defined with very similar calculus rules as in
Riemannian setting.

• RCD spaces characteristically enjoy the Bochner inequality (expressed using
the square field operator and its second iteration), a feature that opens the
door for the use of the maximum principle.

For further details regarding curvature-dimension conditions, we refer the reader
to [8, 11, 12] and for a review of main geometric analytic tools in RCD, see [2]. For
a very brief overview of the needed technology, see the beginning sections of [5].
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3. Main results

3.1. Milnor’s question. A well-known conjecture due to Milnor is that complete
manifold with nonnegative Ricci curvature posses finitely generated fundamental
group. This has only been completely settled in dimension 3 so far. The following
result [6] generalizes – to RCD spaces – an affirmative answer to Milnor’s conjecture
in a special case that is due to Sormani [10].

Theorem 3.1 (Kitabeppu-L. ’15). Let (X, d,m) be a connected, locally contractible,
and non-branching geodesic metric-measure space with supp(m) = X. Suppose X
satisfies the CD(0, N) curvature-dimension conditions that is also infinitesimally

Hilbertian. If X has small linear diameter growth lim sup diam∂(B(p,r))
r < 4SN ,

(where the values of SN are calculated in [6]) Then, X has finitely generated fun-
damental group.

Proof. The proof follows the footsteps of the proof in [10] however one needs to use
a weak version of Abresch-Gromoll excess theorem in RCD spaces. �
3.2. Characterization of low dimensional RCD spaces. One quest in this field
is to axiomatize Ricci limit spaces. There are related open problems due to Sturm
and Villani.

Recall a point in X is called k-regular if all blow up limits around it are metric-
measure isometric to Rk (compare with interior points of manifolds versus corner
or edge points); all such points comprise the regular stratum Rk.

One quite interesting fact is that below synthetic dimension N = 2, the picture
is Riemannian i.e. RCD(K,N < 2) spaces are indeed one dimensional manifolds,
this is a corollary of the following more general theorem proven in [7].

Theorem 3.2 (Kitabeppu-L. ’16). Let X be an RCD(K,N) space for K ∈ R and
N ∈ (1,∞). Assume X is not one point and supp(m) = X. The following are
equivalent:

(1) R1 ̸= ∅,
(2) Rj = ∅ for any j ≥ 2,
(3) m (Rj) = 0 for any j ≥ 2,
(4) X is isometric to R, R≥0, S1(r) or [0, diam(X)].

Moreover, the measure m is equivalent to the 1-dimensional Hausdorff measure H1

i.e. m can be written in the form m = e−fH1 for a (K,N)-convex function f .

Proof. By a careful point picking argument and supposing X is not 1D, it is shown
that the existence of a 1-regular point along with entropy convexity causes a positive
worth of measures to branch passing through p thus contradicting the essential non-
branching property. �
Remark 3.3. Utilizing the above result (among other things), Lytchak-Stadler [9]
showed that two dimensional RCD spaces are indeed Aleksandrov surfaces.

3.3. A flow tangent to Ricci flow. An intrinsic flow for RCD spaces has been
introduced by Gigli-Mantegazza [3] using heat flow and optimal transport. As for
any geometric flow, the formation of singularity is the main question for this flow.
The following result shows under this flow, the singular set does not grow [1].

Theorem 3.4 (Bandara-L.-Munn ’17). Let M be a smooth, compact manifold with
rough metric g that induces a distance metric dg. Moreover, suppose there exists
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K ∈ R and N > 0 such that (M, g, µg) ∈ RCD(K,N). If S ̸= M is a closed set
and g ∈ Ck(M \ S), there exists a family of metrics gt ∈ Ck−1,1 on M \ S evolving
according to the GM flow on M \S. For two points x, y ∈ M that are gt-admissible,
the distance dt(x, y) given by the Gigli-Mantegazza flow is induced by gt.

Proof. The proof entails a careful analysis of the continuity equation which – in
this setting – is a divergence form pde with measurable coefficients. �
3.4. Spectral rigidity (first gap). After a few decades of being investigated,
in 2007, the spectral rigidity (of Zhong-Yang eigenvalue bounds) for Ricci non-
negatively curved manifolds was established in Hang-Wang [4]. The following is a
generalization to RCD spaces [5].

Theorem 3.5 (Ketterer-Kitabeppu-L. ’23). Suppose X is a compact RCD (0, N)

space with supp (m) = X. λ1 = π2

diam2 if and only if X is either a weighted circle or a
weighted line segment; In either cases, the space is equipped with a constant weight
function i.e. m = cH1 (in other words, X is a non-collapsed one dimensional RCD
space).

Proof. Assuming the bound is achieved, an involved analysis of eigenvalue problem
in the singular setting would yield a harmonic potential the gradient flow of which
gives a 1D isometric foliation of the space. Then the diameter restriction would
imply the space must be 1D. �
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ON L-REDUCIBLE FINSLER METRICS
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Abstract. In this paper, we study one of the oldest open problems in Finsler

geometry which was introduced by Matsumoto-Shimada in 1977 about the
existence of a concrete L-reducible Finsler metric that is not C-reducible. To
spot such a Finsler metric, we study the class of spherically symmetric Finsler
metrics. We prove two rigidity theorems for spherically symmetric Finsler

metrics. First, we prove that every spherically symmetric Finsler metric is
semi-C-reducible. Second, we show that every non-Riemannian spherically
symmetric Finsler metric is a generalized L-reducible metric. Finally, we prove
that every non-Riemannian L-reducible spherically symmetric Finsler metric

on a manifold of dimension n ≥ 3 must be a Randers metric.
Key words and phrases: L-reducible metric; C-reducible metric; spheri-

cally symmetric Finsler metric; Randers metric; Landsberg metric.

1. Introduction

The class of Randers metrics is a valuable and important class of non-Riemannian
Finsler metrics which was introduced in 1941 by Physician Gunnar Randers to
study general relativity in 4-dimensional Riemannian manifolds [5]. His discovered

metric is in the form of F = α + β, where α =
√
aij(x)yiyj is gravitation field

and β = bi(x)y
i is the electromagnetic field. In his research, Randers regarded

this metric not as a Finsler metric but as “affinely connected Riemannian metric”,
which is a rather strange notion in Riemannian Geometry.

An interesting and fascinating reality about Randers metrics are hidden in its
Cartan torsion discovered by Makoto Matsumoto in 1974. For an n-dimensional
Finsler manifold (M,F ), the third derivatives of 1/2F 2

x at y ∈ TxM0 is symmetric

trilinear forms Cy on TxM which is called by the Cartan torsion of F . Éli Cartan
introduced this torsion to characterize Riemannian metrics from the Finsler metrics.
Taking a trace of Cartan torsion C gives the mean Cartan torsion I := trace(C).
In 1972, Matsumoto introduced the Matsumoto torsion as follows

My(u, v, w) = Cy(u, v, w)−
1

n+ 1

{
Iy(u)hy(v, w) + Iy(v)hy(u,w) + Iy(w)hy(u, v)

}
,

(1.1)

where hy(u, v) := gy(u, v) − F−2(y)gy(y, u)gy(y, v) is called the angular form in
direction y and gy is the fundamental tensor of F [2]. A Finsler metric F on a
manifold M of dimension n ≥ 3 is called C-reducible if M = 0. Matsumoto showed
that every Randers metric is C-reducible [2]. After six years, in 1978, Matsumoto-
Hōjō proved that the converse is true too, namely, a positive-definite Finsler metric
F is C-reducible if and only if it is a Randers metric [4]. They called this result as
conclusive Theorem.
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In 1975, the well-known Japananese Physicist Y. Takano developed the theory
of fields in Finsler spaces, where the fields have internal freedom. In particular,
he studied the spinor fields details and found it necessary to introduce the gauge
fields into the spinor field equations. Takano studied the field equations in a Finsler
manifold and proposed certain interesting geometrical problems [8]. He requested
mathematicians to find some proper forms of Landsberg curvature from the stand-
point of Physics. In 1978, Matsumoto introduced the notion of L-reducible Finsler
metrics as an answer to Takano, which was a generalization of C-reducible Finsler
metrics [1]. A Finsler metric F on an n-dimensional manifold M is L-reducible if
its Landsberg curvature is given by

(1.2) Ly(u, v, w) =
1

n+ 1

{
Jy(u)hy(v, w) + Jy(v)hy(u,w) + Jy(w)hy(u, v)

}
,

where J := trace(L) denotes the mean Landsberg curvature of F . Throughout this
paper, we exclude the trivial cases of L-reducible metrics [10], including Riemannian
metrics and locally Minkowskian metrics.

As we mentioned, Matsumoto defined (1.2) when he studied the hv-curvature
Pijkl of the Cartan connection. Then, he called such Finsler metrics by the notion
of P -reducible since it comes from the P-curvature and we call them here “L-
reducible metrics” for the relation with Landsberg curvature. If L = 0, then F is
called the Landsberg metric [9]. We have concrete examples of non-Landsberg L-
reducible Finsler metrics. For example, it is evident that every C-reducible metric
is L-reducible. However, the converse of this fact may not be accurate in general.
For a Finsler metric of dimension n ≥ 3, Matsumoto found some conditions under
which the Finsler metric will be L-reducible. Since the study of Landsberg curvature
has become an urgent necessity for the Finsler geometry as well as for theoretical
physics, Matsumoto-Shimada studied some of Riemannian and non-Riemannian
curvature properties of L-reducible metrics in [3]. They introduced the following
open problem:

Is there any L-reducible Finsler metric that is not C-reducible?

There is an interesting generalization of C-reducible metrics. A Finsler metric
F on an n-dimensional manifold M is called quasi-C-reducible if its Cartan torsion
is written as follows

(1.3) Cy(u, v, w) =
1

n+ 1

{
Iy(u)Hy(v, w) + Iy(v)Hy(u,w) + Iy(w)Hy(u, v)

}
,

whereHy := Hijdx
idxj is a symmetric tensor so thatHijy

i = 0. In [3], Matsumoto-
Shimada proved the following.

Theorem A. ([3]) Every 3-dimensional quasi-C-reducible Finsler metric is L-
reducible if and only if it is C-reducible.

In [7], Shibata tried to find concrete L-reducible metrics in the class of Weyl met-
rics, i.e., Finsler metrics of scalar flag curvature. Then he proved the following.

Theorem B. ([7]) Let (M,F ) be a Finsler manifold of dimension n ≥ 3. Sup-
pose that F is of non-zero scalar flag curvature. Then F is L-reducible if and only
if it is C-reducible.



ON L-REDUCIBLE FINSLER METRICS 7

An (α, β)-metric is a scalar function on TM defined by F := αϕ(s), s = β/α, in

which ϕ = ϕ(s) is a C∞ function on (−b0, b0) with certain regularity, α =
√

aijyiyj

is a Riemannian metric, β = bi(x)y
i is a 1-form on M and b := ∥βx∥α (see [11, 13]).

In [6], Shibata characterized L-reducible (α, β)-metrics and showed the following
surprising fact.

Theorem C. ([6]) Every non-Riemannian (α, β)-metric on a manifold M is L-
reducible if and only if it is C-reducible.

Then L-reducible (α, β)-metrics must be Randers or Kropina metrics. Taking into
account Shibata’ results, one can conclude that the problem of existence of a con-
crete L-reducible metric is becoming more and more puzzling.

Inspired by the Numata-type metrics, in [12], Sadeghi and the author introduced
a new class of Finsler metrics that contains the class of L-reducible metrics. This
class of metrics is called generalized P -reducible metrics. Then, we obtained the
following.

Theorem D. ([12]) Every generalized P -reducible (α, β)-metric with vanishing
S-curvature is a Berwald metric or C-reducible metric.

By Theorem D, it follows that there is no concrete L-reducible (α, β)-metric with
vanishing S-curvature. This is a conclusion of Theorem C.

To find concrete L-reducible Finsler metrics, one can consider the class of regular
spherically symmetric Finsler metrics. A Finsler metric F on a domain U ⊆ Rn is
called spherically symmetric metric if it is invariant under any rotations in Rn. In
this case, there exists a positive function ϕ depending on two variables so that F
can be written as

F = |y|ϕ
(
|x|, ⟨x, y⟩

|y|

)
,

where x is a point in the domain U , y is a tangent vector at the point x ,
|x| =

√∑n
i=1(x

i)2, |y| =
√∑n

i=1(y
i)2 and ⟨x, y⟩ =

∑n
i=1 x

iyi. Let us put u := |y|,
v := ⟨x, y⟩, r := |x| and s :=< x, y > /|y|. Then a spherically symmetric Finsler
metric can be written as F = uϕ(r, s). The geodesic spray coefficients of spherically
symmetric Finsler metric F = uϕ(r, s) is given by Gi = uPyi + u2Qxi, where P
and Q defined by ϕ, r and s. In [14], the class of L-reducible spherically symmetric
Finsler metrics is studied, and the following is obtained.

Theorem E.([14]) Let F = uϕ(r, s) be a spherically symmetric Finsler metric
on a domain U ⊆ Rn. Then F is a L-reducible metric if and only if it satisfies the
following PDE

(ϕ− sϕs)L1 − 3ϕssL2 = 0,(1.4)

where

L1 := 3ϕsPss + ϕPsss +
(
sϕ+ (r2 − s2)ϕs

)
Qsss,

L2 :=ϕs(P − sPs)− sϕPss +
(
sϕ+ (r2 − s2)ϕs

)
(Qs − sQss).

However, due to the incredible complexity, we did not get any chance to solve
(1.4). Even the Maple program could not find any solution for it.
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Consider the special form of mean Landsberg curvature J of spherically sym-
metric Finsler metrics, and define the following

(1.5) Ξ :=
1

n+ 1

(
hijs

isj−(n+1)(r2−s2)
)
Jks

k+
1

c2c5

(
c2hijs

isj+c4(r
2−s2)2

)
Ω,

where hij are the components of angular metric, c2 and c4 defined by s and Ω
defined by ϕ and s, si := si := xi − sri and ri := ri := yi/u. Here, we consider
L-reducible spherically symmetric Finsler metrics and prove the following.

Theorem 1.1. Let F = uϕ(r, s) be a non-Riemannian regular spherically symmet-
ric Finsler metric on a manifold M of dimension n ≥ 3. Suppose that Ξ ̸= 0.
Then F is L-reducible if and only if it is a Randers metric.

Here, we give some remarks. We must explain that the method used to prove
Theorem 1.1 is independent of solving PDE (1.4). Also, every two-dimensional
Finsler metric is C-reducible which is not necessarily a Randers metric. Then,
we exclude the case n = 2 in Theorem 1.1. We notify that Theorem 1.1 can be
considered a complement to Theorem E or even a natural extension of it. Also,
Theorem 1.1 gives a negative answer to Matsumoto-Shimada’s open problem in the
class of spherically symmetric Finsler metrics. It is remarkable that, the equation
Ξ = 0 gives us three non-linear ordinary differential equations (see Proposition
1.3). We have not been able to find any solution for these ODE’s until now. But,
we certainly believe that the solutions of the three non-linear ODE (1.6)-(1.8) in
Proposition 1.3 cannot be expressed in terms of elementary functions.

Landsberg metrics are special L-reducible metrics. Here, we get the following.

Corollary 1.2. Every non-Riemannian spherically symmetric Finsler metric of
Landsberg-type on a manifold M of dimension n ≥ 3 with Ξ ̸= 0 reduces to a
Berwald metric.

Ξ = 0 is a non-linear ODE which is divided to three non-linear ordinary differ-
ential equations. We are going to prove the following result.

Proposition 1.3. Let F = uϕ(r, s) be a spherically symmetric Finsler metric on
a domain U ⊆ Rn (n ≥ 3). Then Ξ = 0 if and only if ϕ = ϕ(r, s) satisfies one of
the following

(1.6) (r2 − s2)ϕϕss + ϕ(ϕ− sϕs) =
n+ 1

3
,

(1.7)

(ϕ−sϕs)

[
ϕϕsss+(n+1)ϕsϕss−

n+ 1

r2 − s2

(
sϕϕss−(ϕ−sϕs)ϕs

)]
−(n−2)sϕϕssϕss = 0,

Π
[
sϕΨ+Πϕsϕs −K(ϕϕs − sϕsϕs − sϕϕss)ϕ

]
+ s2ϕ2ϕssϕss = 0,(1.8)

where Ψ := (ϕsϕss + ϕϕsss), Π(s) := ϕ− sϕs and

(1.9) K :=
1

(r2 − s2)s|0
sm|0s

m.
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Abstract. In this paper, we study naturally reductive (α, β)−metrics on
homogeneous manifolds. We show that naturally reductive (α, β)−metrics
arise only when α is naturally reductive and some conditions on ϕ is satis-

fied. We give an explicit formula for the flag curvature of naturally reductive
(α, β)−metrics.

Key words and phrases: (α, β)-metrics; naturally reductive metrics; flag
curvature.

1. Introduction

The study of invariant structures on homogeneous manifolds is an important
problem of differential geometry. Among the Riemannian homogeneous metrics the
naturally reductive ones are the simplest kind. They have nice simple geometric
properties, but still form a large enough class to be of interest. The notion of
naturally reductive Riemannian metrics was first introduced by Kobayashi and
Nomizu [5]. The naturally reductive spaces have been investigated by a number of
authors as a natural generalization of Riemannian symmetric spaces. The definition
of naturally reductive homogeneous Finsler spaces is a natural generalization of the
definition of naturally reductive Riemannian homogeneous space. In literature,
there are two version of the definition of naturally reductive Finsler metrics on a
manifold. The first version was introduced by Deng and Hou in [4]. The second
definition, was given by the author in [6].

Let α =
√
ãij(x)yiyj be a Riemannian metric and β(x, y) = bi(x)y

i be a 1−form
on an n−dimensional manifold M . Let

(1.1) ∥β(x)∥α :=
√
ãij(x)bi(x)bj(x).

Now, let the function F is defined as follows

(1.2) F := αϕ(s) , s =
β

α
,

where ϕ = ϕ(s) is a positive C∞ function on (−b0, b0) satisfying

(1.3) ϕ(s)− sϕ′(s) + (b2 − s2)ϕ′′(s) > 0 , |s| ≤ b < b0.

Then by Lemma 1.1.2 of [3], F is a Finsler metric if ∥β(x)∥α < b0 for any x ∈ M .
A Finsler metric in the form (1.2) is called an (α, β)−metric.

The 1-form β corresponds to a vector field X̃ on M such that

ã(y, X̃(x)) = β(x, y).(1.4)

2010 Mathematics Subject Classification. 53C30, 53C60.
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Also we have ∥β(x)∥α = ∥X̃(x)∥α (for more details see [7, 1]). Therefore we can
write (α, β)−metrics as follows:

F (x, y) = α(x, y)ϕ(
ã(X̃(x), y)

α(x, y)
),(1.5)

2. Main results

Definition 2.1. A Riemannian homogeneous space (G/H, g) is said to be naturally
reductive if there exists a reductive decomposition g = m + h of g satisfying the
condition

(2.1) ⟨[X,Y ]m, Z⟩+ ⟨Y, [X,Z]m⟩ = 0,

for all X,Y, Z ∈ m.

where ⟨, ⟩ denotes the inner product on m induced by the metric g [5]. The first
version of definition of naturally reductive homogeneous Finsler was introduced by
the S. Deng and Z. Hou in [4](see Remark 2.2 below).

Remark 2.2. In [4], a homogeneous manifold G/H with an invariant Finsler met-
ric F is called naturally reductive if there exists an invariant Riemannian metric g
on G/H such that (G/H, g) is naturally reductive and the connection of g and F
coincide.

In this definition, they assume that such a metric should be Berwaldian.
The second definition was given by the author in [7](see Definition 2.3 below).

The scheme is to treat the geometry of coset manifolds G/H as a generalization
of the geometry of Lie group G ( Since G/H reduces to G when H={e} ). From this
viewpoint, the isomorphism m ≃ To(G/H) generalizes the canonical isomorphism
g ≃ TeG, and a G-invariant Riemannian metric on G/H generalizes a left-invariant
metric on G. The notion of bi-invariant Riemannian metric on G generalizes as the
notion of naturally reductive homogeneous Riemannian space.
In fact, when H = {e}, hence m = g, the condition (2.1) is just the condition

(2.2) ⟨[X,Y ], Z⟩+ ⟨Y, [X,Z]⟩ = 0,

for a bi-invariant Riemannian metric on G [8].

Definition 2.3 ([7]). A homogeneous manifold G/H with an invariant Finsler met-
ric F is called naturally reductive if there exists an Ad(H)−invariant decomposition
g = h+m such that

(2.3) gy([x, u]m, v) + gy(u, [x, v]m) + 2Cy([x, y]m, u, v) = 0

where y ̸= 0, x, u, v ∈ m.

Evidently this definition is the natural generalization of (2.1).

Theorem 2.4. Let (M =
G

H
,F ) be a naturally reductive homogeneous Finsler

space, where F is an invariant (α, β)−metric defined by the Riemannian metric

ã = ãijdx
i ⊗ dxj and the vector field X such that ϕ

′
(r) ̸= 0. Then

(a) Each geodesic of (G/H,F ) is an orbit of a one-parameter subgroup of isometries
{exp(tZ)}, Z ∈ g.
(b) (G/H,F ) is of Berwald type and the Chern connection of (G/H,F ) is given by

(∇Y ∗Z∗)o = (−1

2
[Y,Z]m)

∗
o for all Y, Z ∈ m.
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Let (G/H,F ) be a homogeneous Finsler manifold, where F is an invariant
(α, β)−metric defined by the invariant Riemannian metric ã and invariant vector
field X. If (G/H,F ) is naturally reductive then (G/H, ã) is naturally reductieve.

Theorem 2.5. Let (G/H,F ) be a homogeneous Finsler space, where F is an invari-
ant (α, β)−metric defined by the Riemannian metric ã = ãijdx

i⊗dxj and the vector

field X which is parallel with respect to to ã and ϕ
′
(r) ̸= 0, where r =

ã(X, y)√
ã(y, y)

.

If (G/H, ã) is naturally reductive, then (G/H,F ) is naturally reductive.

Theorem 2.6. Let (G/H , F ) be a naturally reductive homogeneous Finsler space,
where F is an invariant (α, β )− metric defined by the Riemannian metric
ã = ãijdx

i ⊗ dxj and the vector field X. Let (P, y) be a flag in m such that {y, u}
is an orthonormal basis of P with respect to ã. Then the flag curvature of (P, y) is
given by

K(P, y) =
ϕ(r)− ϕ

′
(r)r

ϕ2(r)ψ

(
1

4
∥ [u, y]m ∥2 +ã([[u, y]h, u]m, y)

)
,

where ∥ [u, y]m ∥ denotes the norm of [u, y]m with respect to ã = ãijdx
i ⊗ dxj and

r = ã(X, y) and ψ = ϕ(r) + ϕ
′′
(r)r2 − ϕ

′
(r)r.

Proof. Using the explicit expression for the connection of M , a straightforward
lengthy calculation leads to the following expression for the curvature tensor R of
(G/H,F ).

(2.4) Ro(v, w)z = −[[v, w]h, z]−
1

2
[[v, w]m, z]m − 1

4
[[z, v]m, w]m +

1

4
[[z, w]m, v]m,

for all v, w, z ∈ m ∼= ToM .
For the flag curvature we have

(2.5) K(P, y) =
gy(R(u, y)y, u)

gy(y, y)gy(u, u)− g2y(y, u)
.

The result is obtained by calculating and placing components in the curvature
formula. �

Definition 2.7 ([2]). A Finsler space with Finsler function

F (x, y) = α(x, y) + β(x, y)

is called a Randers space .

In [7], the author gives an explicit formula for the flag curvature of naturally
reductive Randers spaces. As a corollary of Theorem 2.6, we have the following
corollary.

Corollary 2.8. Let (G/H,F ) be a naturally reductive Randers space with F defined
by the Riemannian metric ã = ãijdx

i ⊗ dxj and the vector field X. Let (P, y) be a
flag in m such that {y, u} is an orthonormal basis of P with respect to ã. Then the
flag curvature of the flag (P, y) in m is given by

K(P, y) =
1

(1 + ã(X, y))2

(
1

4
∥ [u, y]m ∥2 +ã([[u, y]h, u]m, y)

)
.
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We note that if the Randers space (G/H,F ) is Riemannian i.e. X = 0, then
the above formula for flag curvature is just the formula for sectional curvature of a
naturally reductive homogeneous Riemannian manifold [5, 7]:

K(u, y) =
1

4
⟨[u, y]m, [u, y]m⟩+ ⟨[[u, y]h, u]m, y⟩.

The following result generalizes Milnor results about the sectional curvature of
bi-invariant Riemannian metrics (see [8]) to bi-invariant (α, β)−metrics.

Theorem 2.9. Let G be a Lie group with a bi-invariant (α, β)−metric F defined by

the Riemannian metric ã = ãijdx
i⊗dxj and the vector field X such that ϕ

′
(r) ̸= 0.

Let (P, y) be a flag in g such that {y, u} is an orthonormal basis of P with respect
to ã = ãijdx

i ⊗ dxj. Then the flag curvature of the flag (P, y) in g is given by

K(P, y) = (
ϕ(r)− ϕ

′
(r)ã(X, y)

4ϕ2(r)ψ
) ∥ [u, y] ∥2,

where ∥ [u, y] ∥ denotes the norm of [u, y] with respect to ã = ãijdx
i ⊗ dxj, and

r = ã(X, y) and ψ = ϕ(r) + ϕ
′′
(r)r2 − ϕ

′
(r)r.
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CRITICAL METRICS ON PSEUDO-RIEMANNIAN MANIFOLDS
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Abstract. Critical metrics are thoroughly studied in relation to quadratic
curvature functionals over Gödel-type space-times. This study leads to the

unequivocal determination of homogeneous critical metrics on the spaces being
analyzed.

Key words and phrases: critical metric; Gödel space-time; quadratic cur-
vature functional.

1. Introduction

In the field of differential geometry, a fascinating topic with significant appli-
cations in mathematical physics is the study of critical metrics over a family of
(pseudo-)Riemannian manifolds. For an oriented, closed manifold Mn equipped
with a family M1 of (pseudo-)Riemannian metrics of volume one, it is vital to
determine extremum metrics from M1 for a specific curvature functional. This
problem of critical metrics is of utmost importance.

Einstein metrics are widely recognized as critical metrics. The condition for
Einstein metrics, ϱ = λg for some real constant λ, is the same as the Euler-Lagrange
system related to the Einstein-Hilbert functional g 7→

∫
M

τdvolg. The Ricci tensor
and scalar curvature, denoted by ϱ and τ respectively, are involved in this system.

Curvature functionals based on scalar quadratic curvature invariants have been
extensively studied in the literature. This topic was initiated in the Riemannian
settings in [1] and has been further explored by numerous scholars. For an in-
depth survey on quadratic curvature functionals and critical metrics, we recommend
referring to [2, 3], and the references therein. While quadratic curvature functionals
can be studied in different dimensions of the base manifold, the dimension 4, which
is the framework of space-times, receives more attention.

To study the quadratic curvature invariants, note that {∆τ, τ2, ||ϱ||2, ||R||2} serve
as a basis. Thus, a generic functional on quadratic curvature invariants can be
expressed as follows

(1.1) g 7→
∫
M

(
aτ2 + b||ϱ||2 + c||R||2

)
dvolg,

where a, b, c are arbitrary real constants and R is the curvature tensor. In dimension
4, the Gauss-Bonnet Theorem yields the equation

32π2χ(M) =

∫
M

(
τ2 − 4||ϱ||2 + ||R||2

)
dvolg.
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This means that the critical points related to the curvature tensor are equivalent to
the critical points of the functional 4||ϱ||2 + τ2. Therefore, the functional of equa-
tion (1.1) is equivalent to g 7→

∫
M

(
(a− c)τ2 + (4c+ b)||ϱ||2

)
dvolg. It is important

to note that the manifold (M, g) is critical for the functional (1.1) whenever it is crit-
ical for the following functionals S and Ft: Ft : g 7→

∫
M

(
tτ2 + ||ϱ||2

)
dvolg, t ∈ R,

and S : g 7→
∫
M

τ2dvolg.
It is absolutely imperative to note that for all quadratic curvature functionals

Ft, t ∈ R, Einstein metrics are critical (see [2]). In the Riemannian settings,
it has been established that for the functional F−1/3, the Bach-flat metrics are
critical, while for both functionals F−1/4 and S, the Weyl metrics with zero scalar
curvature are critical. These well-known results certainly spark interest in exploring
the critical metrics in different signatures for quadratic curvature functionals.

K. Gödel in [4] introduced homogeneous solutions to the Einstein’s field equa-
tions with cosmological constant Λ for a universe in rotation ω and with an inco-
herent matter distribution, included the existence of closed time-like curves. These
Gödel-type space-times, both in their homogeneous form and in higher dimensions,
have been the subject of extensive study in Differential Geometry and Theoretical
Physics.

The current study considers homogeneous Gödel-type space-times and explicitly
determines classes of critical metrics for quadratic curvature functionals S and Ft.

The upcoming section will present crucial facts and material necessary for ex-
amining critical metrics on Gödel-type space-times. Following that, the subsequent
section will deliver the classification of critical metrics on the homogeneous Gödel-
type space-times.

2. Preliminaries

LetMn
1 denote the set of (pseudo-)Riemannian metrics of volume one on a closed

oriented manifold Mn. A real valued function F on Mn
1 , such that F (φ∗g) = F (g)

for every diffeomorphism φ and every g ∈ Mn
1 is called a (pseudo-)Riemannian

functional. Since φ is by definition an isometry between (M, g) and (M,φ∗g), this
means that the functional F only depends on Riemannian geometric data, and can
be viewed as a function on the quotient spaceM1/D, whereD is the diffeomorphism
group of M .

The Euler-Lagrange equations for a quadratic curvature functional are well es-
tablished and can be computed in the Riemannian settings [1, 5]. It is worth noting
that the results obtained for the Riemannian case can be effortlessly extended to
the pseudo-Riemannian settings, as the arguments do not depend on the signature
of the base metric.

For the functionals Ft : g 7→
∫
M

(
tτ2 + ||ϱ||2

)
dvolg and S : g 7→

∫
M

τ2dvolg, one
can give the gradients as follows

(∇S)ij = 2∇2
ijτ − 2(∆τ)gij − 2τϱij +

1
2τ

2gij ,

(∇Ft)ij = −∆ϱij + (1 + 2t)∇2
ijτ − 1+4t

2 (∆τ)gij − 2tτϱij − 2ϱklRikjl

+ 1
2

(
tτ2 + ||ϱ||2

)
gij .

Noting that, if (∇Ft) = cg for some real constant c, then g is critical for Ft and
vice versa. By taking trace of the above equation we have

(n− 4)
(
tτ2 + ||ϱ||2

)
− (n+ 4(n− 1)t)∆τ = 2nc.
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Thus, g is critical for Ft if and only if

(2.1) −∆ϱij+(1+2t)∇2
ijτ−

2t

n
(∆τ)gij−2ϱklRikjl−2tτϱij+

2

n

(
tτ2 + ||ϱ||2

)
gij = 0,

and

(2.2) (n− 4)
(
tτ2 + ||ϱ||2 − λ

)
= (n+ 4(n− 1)t)∆τ,

where λ = Ft(g) (see [3]). It is a logical outcome that Ft has critical points for
Einstein metrics with any given value of t. Furthermore, as per the relation of
∇S mentioned above, critical points for S are metrics with either vanishing scalar
curvature or Einstein.

In spaces that are four-dimensional with constant scalar curvature, particularly
in homogeneous spaces, the aforementioned Euler-Lagrange equations can be sim-
plified significantly. In fact, in this scenario, equation (2.2) is satisfied automatically
as (∇S)ij = 2τ

(
1
4τgij − ϱij

)
. Equation (2.1) is reduced to

(2.3) ∆ϱ+ 2R [ϱ] + 2tτϱ− 1

2

(
||ϱ||2 + tτ2

)
g = 0,

where R [ϱ] is the tensor field defined by components ϱklRikjl. The forthcoming
sections will focus on this equation (2.3) and its solutions.

Scholars have extensively studied Gödel-type space-times. These space-times are
exposed by the Lorentzian metrics using the local coordinate (t, r, ϕ, z).

(2.4) g = [dt+H(r)dϕ]2 − dr2 −D2(r)dϕ2 − dz2,

The metrics are given by Equation (2.4), where (r, ϕ, z) are the usual cylindrical
coordinates and t ≥ 0 is the time variable and r, ϕ, z ∈ R (undetermined for r = 0).
It is important to note that g is non-degenerate whenever D(r) ̸= 0 since det(g) =
−D2(r). Furthermore, homogeneous Gödel-type space-times are manifolds that
satisfy Equations (2.5), where ω and α are real scalars [7, 6].

(2.5) D′′ = αD, H ′ = −2ωD.

These manifolds have determining functions D and H that are of class C∞, as
opposed to at least C2 for the curvature tensor calculation, which is required for
the functions D and H in Equation (2.4).

3. Homogeneous critical metrics

This section focuses on calculating critical metrics for the functionals S and
Ft derived from homogeneous Gödel-type space-times. As stated in Section two,
metrics with vanishing scalar curvature or Einstein are critical for the functional S.
It is important to note that the scalar curvature in the presence of the homogeneity
condition (2.5) is easily τ = 2(α− ω2), meaning that the scalar curvature vanishes
when α = ω2. By applying this condition in equation (2.5), we deduce the following
system of ordinary differential equations:{

H ′ + 2ωD = 0,
D′′ −Dω2 = 0.

Through direct calculations, we obtain

H = c1 − 2c2e
ωr + 2c3e

−ωr and D = c2e
ωr + c3e

−ωr,

where c1, c2, c3 are arbitrary real constants. The following remark is a direct con-
sequence of this arguments.
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Remark 3.1. A homogeneous Gödel-type space-time (M, g) is critical for the func-
tional S if and only if either

• H = c1, D = c2r + c3, or
• H = c1 − 2c2e

ωr + 2c3e
−ωr, D = c2e

ωr + c3e
−ωr,

where c1, c2, c3 are arbitrary real constants.

We must calculate critical homogeneous Gödel-types metrics for the functional
Ft. It is necessary to determine the tensors that create this relation according to
equation (2.3). By considering the homogeneity conditions (2.5), expressions for
the Levi-Civita connection, curvature tensor and the Ricci tensor are calculated
directly as

(3.1)

∇∂t∂r = −ωH

D
∂t +

ω

D
∂ϕ, ∇∂t∂ϕ = −ωD∂r,

∇∂r∂ϕ = −
(
ω(D2 +H2) +HD′)

D
∂t +

(ωH +D′)

D
∂ϕ,

∇∂ϕ
∂ϕ = −D (2ωH +D′) ∂r,

and

(3.2)

R(∂t, ∂r) =− ω2 (∂t ⊗ dr + ∂r ⊗ dt+H∂r ⊗ dϕ) ,

R(∂t, ∂ϕ) =ω2
(
H∂t ⊗ dt+ (H2 −D2)∂t ⊗ dϕ− ∂ϕ ⊗ dt−H∂ϕ ⊗ dϕ

)
,

R(∂r, ∂ϕ) =H(4ω2 − α)∂1 ⊗ dr +Hω2∂r ⊗ dt

+ ((3ω2 − α)D2 +H2ω2)∂r ⊗ dϕ+ (α− 3ω2)∂ϕ ⊗ dr,

and

(3.3) ϱ = 2ω2dt2 + 4ω2Hdtdϕ+ (2ω2 − α)dr2 + ((2ω2 − α)D2 + 2ω2H2)dϕ2.

Through direct calculations and the application of the homogeneous condition (2.5)
once more, it is evident that the Ricci tensor’s Lapidarian can be expressed as
follows:

∆ϱ = (α− 4ω2)
(
4ω2dt2 + 8ω2Hdtdϕ+ 2ω2dr2 + 2(2H2 + P 2)dϕ2

)
.

By utilizing the equations (3.2) and (3.3) and conducting a metric contraction on
the indices, ϱklRikjl, the tensor field R[ϱ] can be calculated.

R[ϱ] =2ω2(α− 2ω2)dt2 + 4Hω2(α− 2ω2)dtdϕ− (8ω4 − 5αω2 + α2)dr2

− (D2(8ω4 − 5αω2 + α2)− 2H2ω2(α− 2ω2))dϕ2.

The criticality of the homogeneous Gödel-type metric g for the functional Ft is
established when the following set of equations is applied in Equation (2.3), given
that ∥ϱ∥2 = 12ω4 − 8αω2 + 2α2.

(3.4)



H
(
(2t+ 1)α2 − 12ω2(t+ 1)α+ 10ω4(t+ 3)

)
= 0,

H2
(
(−2t− 1)α2 + 12ω2(t+ 1)α− 10ω4(t+ 3)

)
−D2

(
(2t+ 1)α2 − 8ω2(t+ 1)α+ 6ω4(t+ 3)

)
= 0,

α2(2t+ 1)− 4ω2α(t+ 1) + 2ω4(t+ 3) = 0,
α2(2t+ 1)− 8ω2α(t+ 1) + 6ω4(t+ 3) = 0,
α2(2t+ 1)− 12ω2α(t+ 1) + 10ω4(t+ 3) = 0.

It is evident that the first two equations establish simultaneously, and it is im-
perative that we consider diverse solutions of the last three equations. The critical
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metrics for the functional Ft are summarized in the following theorem with utmost
precision and accuracy.

Theorem 3.2. A homogeneous Gödel-type space-time (M, g) is critical for the
functional Ft if and only if one of the following cases occur

I) H = c1, D = c2 + c3r for any real value of t.
II) H = c1 − c2ωr

2 − 2c3ωr, D = c2r + c3, ω ̸= 0, for t = −3,

III) H = c1,

{
D = c2e

√
αr + c3e

−
√
αr, α > 0

D = c2 cos(
√
−αr) + c3 sin(

√
−αr), α < 0

, for t = −1
2 ,

IV) H = c1 + c2e
−2ωr − c3e

2ωr, D = c2e
−2ωr + c3e

2ωr, ω ̸= 0, for t = − 1
3 ,

where c1, c2, c3 are arbitrary real constants.

Proof. Consider the following set of equations. eq1 := α2(2t+ 1)− 4ω2α(t+ 1) + 2ω4(t+ 3) = 0,
eq2 := α2(2t+ 1)− 8ω2α(t+ 1) + 6ω4(t+ 3) = 0,
eq3 := α2(2t+ 1)− 12ω2α(t+ 1) + 10ω4(t+ 3) = 0.

If α = 0, then the above equations give ω4(t + 3) = 0. Consider the following
cases.

• If ω = 0, then all of the equations vanish for any value of t, and the
equation (2.5) gives H ′ = D′′ = 0. The first statement is deduced by
regular integration.

• If ω ̸= 0, then t = −3 and the equation (2.5) gives H ′ = −2ωD,D′′ = 0.
The second statement is obtained by direct calculations.

If α ̸= 0,

• If ω = 0, then α2(2t + 1) = 0, which gives t = − 1
2 . From equation (2.5),

we get H ′ = 0, D′′ = αD. The third statement is deduced by noticing that
H = c1 and by determining whether α > 0 or α < 0.

• If ω ̸= 0, then 1
4ω2 (eq2 − eq1) = ω2(t+ 3)− α(t+ 1) = 0. Thus, t = 3ω2−α

α−ω2

and then eq3 gives α(α− 4ω2) = 0, which immediately concludes α = 4ω2.
So, t = − 1

3 and the equation (2.5) gives H ′ = −2ωD,D′′ = 4ω2D. The
last statement is obtained by direct calculations.

�

It is important to note that the first statement corresponds strictly to the flat
(Einstein) solutions and the equation (2.3) is valid for any value of t. In addition,
the last statement clearly indicates a conformally flat solution, which is also Bach-
flat. As extensively studied in the literature, Bach-flat metrics are critical for F−1/3.
Therefore, we strongly conclude that in the case of homogeneous Gödel-type space-
times, Bach-flatness inevitably leads to conformal flatness.

4. Conclusion

This paper has thoroughly examined the critical metrics for functionals defined
according to quadratic curvature invariants. These functionals have been widely
studied in both geometric and physical contexts. Our study focused on the crucial
Gödel-type space-time, which is of paramount importance in physical research. We
have successfully provided a complete solution for the problem of classifying critical
metrics for the functionals Ft and S for the homogeneous Gödel-type space-times.
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THE LATTICES OF MÖBIUS TRANSFORMATIONS

ALI MOLKHASI, TAREGH ANSARI, AND AMIRHOSSEIN TAGHIZADEH

Abstract. The purpose of the note is to explore some properties of Möbius

transformations. We obtain conditions that lattices of composition series of a
Möbius group with finite composition length be a slim semimodular lattice.

Key words and phrases: Möbius transformation; group Möbius; slim semi-
modular lattice

1. Introduction

The theory of Möbius Transformations is developed without any use of and only
one reference to complex analysis. Möbius transformations, named in honor of Ger-
man mathematician August Ferdinand Möbius (1790-1868). The Möbius transform,
which originated in the work of Rota [10], was introduced to deal with problems in
combinatorics and number theory. There are numerous fields and results intertwin-
ing with the theory of the Möbius transform. Notice that there are many known
connections between Möbius transform properties and slim semimodular lattices
(see [10, 3, 6, 11] ).

Slim semimodular lattices were introduced by G. Gratzer and E. Knapp in 2007,
and they have been intensively studied since then. By a slim lattice we mean a finite
lattice such that the poset (partially ordered set) of its non-zero join-irreducible
elements, contains no three-element antichain. Semimodular lattices have recently
proved to be useful in strengthening a classical group theoretical result, namely,
the Jordan-Holder theorem. G. Grätzer and J. B. Nation [4] proved that given
two composition series of a group, there is a matching between their factors such
that the corresponding factors are isomorphic for a very specific reason. Every slim
distributive lattice is dually slim.

This motivates the main result of the present paper, which asserts that lattices
of composition series of a Möbius group with finite composition length is a slim
semimodular lattice. Also, it is shown that the only Möbius transformation with
more than two fixed-points is the identity.

2. Main results

In his fundamental paper [10], Rota introduced the Möbius inversion formula for
any locally finite partially ordered set.

A Möbius transformation, is a map:

z 7→ az + b

cz + d
;

(
z ∈ Ĉ, a, b, c, d ∈ C, ad− bc ̸= 0

)
2010 Mathematics Subject Classification. 30H25, 06C10 .
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It is clear that a Möbius transformation is holomorphic except for z = −d
c . Now,

we make the assignments f(−d
c ) = ∞ and f(∞) = a

c if c ≠ 0. If c = 0, we assign
f(∞) = ∞ [5, 7].

Möbius geometry provides a unifying framework for studying planar geometries.
In particular, the transformation groups of hyperbolic and elliptic geometries in the
sections that follow are subgroups of the group of Möbius transformations [9].

We recall from [9] that under composition, Möbius transformations form a non-
commutative group identifiable with a quotient of subgroups of the multiplicative
group of invertible 2-by-2 matrices and there is a natural relationship between
Möbius group operations and matrix group operations. The map

τ : GL(2,C) → M

be given by [
a b
c d

]
7→

[
z 7→ az + b

cz + d

]
is a group homomorphism. The kernel of τ is the group of nonzero scalar matrices.

kerτ =

{[
k 0
0 k

]
, k ̸= 0

}
Also, the inverse of a Möbius transformation is a Möbius transformation, and the
composition of two Möbius transformations is a Möbius transformation and we have

PGL(2,C) ≈ M [8].

The Möbius functions M(z) = az+b
cz+d is determined by the values of four constant

parameters a, b, c, d and very other M(z) has one or two Fixed-Points f = M(f)
and we will have the following theorem.

Theorem 2.1. The only Möbius transformation with more than two fixed-points
is the identity,

A lattice is a poset P any pair of elements x, y have a g.l.b. or meet denote
by x ∧ y, and a l.u.b. or join denote by x ∨ y. We recall form [2] that a lattice L
is (upper) semimodular if, for all x, y ∈ L, x ∧ y ≺=⇒ y ≺ x ∨ y. A semimodular
lattice L is finite by definition, whence it has 0 = 0L and 1 = 1L. Let B be a set
B and C be a subset C of the power set Pow(B) = {X : X ⊆ B} of B. We denote
by X ≺ Y that Y covers X in C , that is, X ⊂ Y but there is no Z ∈ C such that
X ⊂ Z ⊂ Y . We refer to [2] and [4] for some recent study related to lattices.

Definition 2.2. Let H : {1} = H0▹H1▹. . .▹Hn = G and be composition series of
a Möbius group G. Denote {Hi ∩Kj : i, j ∈ {0, . . . , n}} by Lat(H, K). Clearly,

Lat(H, K) = (Lat(H, K), ⊆) is a lattice.

Now, we can prove that the following Theorem.

Theorem 2.3. If G is a Möbius group with finite composition length and for any
composition series H and K of G, then Lat(H, K) is a slim semimodular lattice.
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CONFORMAL TRANSFORMATION OF CURVATURES IN

FINSLER GEOMETRY

AKBAR TAYEBI AND FAEZEH ESLAMI

Abstract. In this paper, we study the conformal transformation of some
important and effective non-Riemannian curvatures in Finsler Geometry. We
find the necessary and sufficient condition under which the conformal transfor-

mation preserves the Berwald curvature, mean Berwald curvature, Landsberg
curvature and mean Landsberg curvature.

Key words and phrases: Berwald curvature; mean Berwald curvature;
Landsberg curvature; mean Landsberg curvature.

1. Introduction

The theory of conformal transformation (or change) of Finsler metrics has been
studied by many Finsler geometers [2, 3, 4, 5, 6, 9]. But, Knebelman is the first
person that studied the conformal theory of general Finsler metrics in [4]. He gave a
geometrical criterion according to two Finsler metrics g(x, y) = gij(x, y)dx

idxj and
g̃(x, y) = g̃ij(x, y)dx

idxj to be conformal; this reduces to the usual requirement that
gij = eκg̃ij . In [5], he proved that the mentioned condition implies that κ = κ(x)
is a function of position, merely. Indeed, two Finsler metric functions F = F (x, y)
and F̄ = F̄ (x, y) as conformal if the length of an arbitrary vector in the one is
proportional to the length in the other. The classical Weyl theorem states that
the projective and conformal properties of a Finsler metric determine the metrics
properties uniquely. Thus, the conformal properties of the class of Finsler metric
deserve extra attention.

In Finsler geometry, there are several important non-Riemannian quantities: the
Berwald curvature B, the mean Berwald curvature E and the Landsberg curvature
L, the mean Landsberg curvature J, the non-Riemannian curvature H, etc. They
all vanish for Riemannian metrics, hence they are said to be non-Riemannian. In
order to understand the conformal Finsler geometry, one can consider the conformal
transformation of these non-Riemannian quantities.

The geodesics of F are characterized locally by the equation

d2xi

dt2
+ 2Gi(x,

dx

dt
) = 0,

where Gi are coefficients of a spray G defined on M denoted by G = δ/δxiyi.
Taking three vertical derivation of geodesic coefficients of F give us the Berwald
curvature B. A Finsler metric F is called a Berwald metric if B = 0. In this case,
Gi = Γi

jk(x)y
jyk are quadratic in y ∈ TxM for any x ∈ M . Every Berwald metric

is a Landsberg metric.
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Taking a trace of Berwald curvature yields mean Berwald curvature E. Taking a
horizontal derivation of the mean of Berwald curvature E give us the H-curvature
H. In the class of Weyl metrics, vanishing this quantity results that the Finsler
metric is of constant flag curvature and this fact clarifies its geometric meaning
[1, 7]. By the definition, if E = 0 then H = 0.

In this paper, we study the conformal transformation of some important and
effective non-Riemannian curvatures in Finsler Geometry. We find the necessary
and sufficient condition under which the conformal transformation preserves the
Berwald curvature B, mean Berwald curvature E, Landsberg curvature L, mean
Landsberg curvature J, and the non-Riemannian curvature H.

There are many connections in Finsler geometry. Throughout this paper, we set
the Berwald connection on Finsler manifolds. The h- and v- covariant derivatives
of a Finsler tensor field are denoted by “ | ” and “, ” respectively.

2. Conformal Transformation of (Mean) Berwald Curvature

In this section, we find the necessary and sufficient condition under which the
conformal transformation preserves the Berwald curvature B and mean Berwald
curvature E. For this aim, we need the following.

Theorem 2.1 ([8]). Let F and F̄ be two Finsler metrics on a manifold M . Then

Ḡi = Gi +
gij

4

{
(F̄ 2)|k,jy

k − (F̄ 2)|j

}
,(2.1)

where Gi and Ḡi are the geodesic spray coefficients of F and F̄ , respectively, and
“|” and “, ” denote the horizontal and vertical derivation with respect to the Berwald
connection of F .

Now, we can study the conformal transformation of Berwald curvature. We
prove the following.

Theorem 2.2. Let F and F̄ be two Finsler metrics on a manifold M . If
F̄ (x, y) = eσF (x, y), then the conformal transformation preserves the Berwald cur-
vature if and only if the conformal factor σ = σ(x) satisfies following equation.

2Cjklσ
i − 2gjkσ

mCi
ml + 4σpCm

pl(yjC
i
mk + ykC

i
mj)

− 2σm(gjlC
i
mk + gklC

i
mj + yjC

i
mk,l + ykC

i
mj,l) + 4ylσ

pCm
pkC

i
mj

− 4F 2σsCp
slC

m
pkC

i
mj + 2F 2σp(Cm

pk,lC
i
mj + Cm

pkC
i
mj,l)− 2ylσ

mCi
mj,k

+ 2F 2σsCm
slC

i
mj,k − F 2σmCi

mj,k,l = 0.

(2.2)

In particular, if σ(x) = constant, then B̄ = B.

Theorem 2.3. Let F and F̄ be two Finsler metrics on a manifold M . If
F̄ (x, y) = eσF (x, y), then the conformal transformation preserves the mean Berwald
curvature if and only if the conformal transformation is homothetic or the conformal
factor σ = σ(x) satisfies following equation.

4Ip(yiC
p
kj + yjC

p
ki) + 2F 2(Cp

kjIp,i + Cp
kiIp,j)

− 2(yiIk,j + yjIk,i + gijIk) + F 2(2IsC
s
ki,j − Ik,i,j − 4IsC

s
piC

p
kj) = 0.(2.3)
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In particular, if σ(x) = constant, then Ē = E.

3. Conformal Transformation of Mean (Landsberg) Curvature

In this section, we find the necessary and sufficient condition under which the
conformal transformation preserves the Landsberg curvature L and mean Lands-
berg curvature J.

Theorem 3.1. Let F and F̄ be two Finsler metrics on a manifold M . If
F̄ (x, y) = eσF (x, y), then the conformal transformation preserves the Landsberg
curvature if and only if the conformal factor σ = σ(x) satisfies following equation.

σ0Cjkl + σs
[
yjCskl + ykCsjl + ylCsjk + F 2Cjkl,s

− F 2(CmjlC
m
sk + CmjkC

m
sl + CmklC

m
sj)

]
= 0.

In particular, if σ(x) = constant, then L̄ = L.

Theorem 3.2. Let F and F̄ be two Finsler metrics on a manifold M . If
F̄ (x, y) = eσF (x, y), then the conformal transformation preserves the mean Lands-
berg curvature if and only if the conformal factor σ = σ(x) satisfies following equa-
tion.

σ0Il + σs
[
Isyl + F 2(Il,s + 2Cjk

sCjkl − Ck
mlC

m
sk − Cj

mlC
m
sj − ImCm

sl)
]
= 0.

In particular, if σ(x) = constant, then J̄ = J.

4. Conformal Transformation of H-Curvature

In this section, we find the necessary and sufficient condition under which the
conformal transformation preserves the H-Curvature H.

Theorem 4.1. Let F and F̄ be two Finsler metrics on a manifold M . If
F̄ (x, y) = eσF (x, y), then the conformal transformation preserves the H-curvature
if and only if the conformal factor σ = σ(x) satisfies following equation.

Qm
mij|sy

s =σp
[
2F 2Eij,p + 2(Eipyj + Ejpyi)− 2F 2(EimCm

pj + EjmCm
pi)

−F 2Qm
mij,p − (Qm

mipyj +Qm
mjpyi) + F 2(Qm

misC
s
pj +Qm

mjsC
s
pi)

]
.

In particular, if σ(x) = constant, then H̄ = H.
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[2] S. Bácsó and X. Cheng, Finsler conformal transformations and the curvature invariants,

Publ. Math. Debrecen. 70(1-2) (2007), 221-231.
[3] B. Bidabad and Z. Shen, Circle-preserving transformations on Finsler spaces, Publ.

Math.Debrecen. 81(2012), 435-445.
[4] M. Hashiguchi, On conformal transformations of Finsler metrics, J. Math. Kyoto Univ.

16(1976), 25-50.
[5] M. S. Knebelman, Conformal geometry of generalized metric spaces, Proc. Nat. Acad.

Sci. USA. 15(1929), 376-379.

[6] M. Matsumoto , Conformally Berwald and conformally flat Finsler spaces, Publ. Math.
Debrecen. 58(2001), 275-285.



CONFORMAL TRANSFORMATION OF CURVATURES IN FINSLER GEOMETRY 27

[7] B. Najafi, Z. Shen and A. Tayebi , Finsler metrics of scalar flag curvature with special

non-Riemannian curvature properties, Geom. Dedicata. 131(2008), 87-97.
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ON SQUARE FINSLER METRICS

AKBAR TAYEBI AND FATEMEH BARATI

Abstract. In this paper, we remark some of the well-known curvature prop-

erties of square metric. Then, we find the necessary and sufficient condition
under which a square metric is weakly stretch.

Key words and phrases: Square metric; stretch curvature; mean stretch
curvature.

1. Introduction

The well-known Hilbert’s Fourth Problem is to characterize the distance func-
tions on an open subset in Rn such that straight lines are shortest paths. It turns
out that there are lots of solutions to the problem. For example, in [4], Blaschke
discusses 2-dimensional solutions to the problem. Then, Ambartzumian [2] and
Alexander [1] independently give all 2-dimensional solutions. In [8], Pogorelov dis-
cusses smooth solutions in 3-dimensional case. Then, Szabó investigates several
problems left by Pogorelov and constructs continuous solutions to the problem in
high dimensions [14]. See [5] on related issue.

The Hilbert Fourth Problem in the smooth case is to characterize Finsler metrics
on an open subset in Rn whose geodesics are straight lines. Such Finsler metrics
are called projectively flat Finsler metrics or projective Finsler metrics. Hamel first
characterizes projective Finsler metrics by a system of PDE’s [6]. Then, Rapcsák
extends Hamel’s result to projectively equivalent Finsler metrics [9].

For an n-dimensional Finsler manifold (M,F ), a global vector field G is induced
by F on TM0 := TM − {0}, which in a standard coordinates (xi, yi) for TM0 is
given by G = yi ∂

∂xi −2Gi(x, y) ∂
∂yi , where G

i = Gi(x, y) are called spray coefficients

and given by following

(1.1) Gi =
1

4
gil

∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl
.

G is called the spray associated to F . F is projectively flat if only if there exists
scalar homogeneous function P : TU → R such that the its spray coefficients satisfy

Gi(x, y) = P (x, y)yi.(1.2)

In this case, P = P (x, y) is called the projective factor.
In Finsler Geometry, there is an interesting class of projectively flat metrics on

the unit ball Bn which is given by

(1.3) F =
(
√
(1− |x|2)|y|2 + ⟨x, y⟩2 + ⟨x, y⟩)2

(1− |x|2)2
√

(1− |x|2)|y|2 + ⟨x, y⟩2
.
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This class of metrics is called square metrics which can be expressed as

(1.4) F =
(α+ β)2

α
,

where

(1.5) α =

√
(1− |x|2)|y|2 + ⟨x, y⟩2

(1− |x|2)2
, β =

⟨x, y⟩
(1− |x|2)2

.

That α is a Riemannian metric and β is a 1-form with ∥β∥α < 1. L. Berwald first
constructed a special projectively flat square metric of zero flag curvature on the
unit ball in Rn (see [3]).

Then the flag curvature of F is a function K = K(P, y) of tangent planes
P ⊂ TxM and directions y ∈ P . F is called of scalar curvature if the flag curvature
K = K(x, y) is a scalar function on the slit tangent bundle TM0, for any y ∈ TxM .
Recently, Shen-Yildirim determine the local structure of all locally projectively flat
square metrics of constant flag curvature. Later on, L.Zhou shows that a square
metric of constant flag curvature must be locally projectively flat. In [13], Shen-
Yang proved the following.

Theorem 1.1 ([13]). Let F = (α+ β)2/α be a square metric on a (n ≥ 3)-

dimensional manifold M , where α =
√
aij(x)yiyj is Riemannian and β = bi(x)y

i

is a 1-form on M . Then F is of scalar flag curvature if and only if it is locally
projectively flat.

A Finsler metric F = F (x, y) on a manifold M is said to be locally dually flat if
at any point there is a coordinate system (xi) in which the spray coefficients are in
the following form

Gi = −1

2
gijHyj ,

where H = H(x, y) is a C∞ scalar function on TM0 = TM \ {0} satisfying
H(x, λy) = λ3H(x, y) for all λ > 0.

Theorem 1.2 ([7]). Let F = (α+ β)2/α be a square metric on an open subset
U ⊆ Rn with n ≥ 3. Then F is dually flat if and only if one of the following holds:
(i) F is a dually flat Riemannian metric.
(ii) F is of Minkowski-type. Moreover, F can be expressed in the following form.

(1.6) F =
(|y|+ ⟨v, y⟩)2

|y|
,

where v ∈ Rn is a non zero constant vector.

Let (M,F ) be an n-dimensional manifold Finsler manifold. Then F is called an
Einstein metric if its Ricci curvature Ric is isotropic,

Ric = (n− 1)λF 2,

where λ = λ(x) is a scalar function on M . In [10], Shen-Yu proved the following.

Theorem 1.3 ([10]). Let F = (α+ β)2/α be a square metric on a n-dimensional
manifold M , Then F is an Einstein metric if and only if it is Ricci flat and

αRic = k2(1− b2)2−[5(n− 1) + 2(2n− 5)b2]α2 + 6(n− 2)β2,

bi|j = k(1− b2)(1 + 2b2)aij − 3bibj .(1.7)

Then, they determined the local structure of Einstein square metrics as follows.
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Theorem 1.4 ([10]). Let F = (α+ β)2/α be a square metric on a n-dimensional
manifold M , Then the following are equivalent.
(1)F is an Einstein metric.

(2) The Riemaninnain metric α̃ := (1− b2)α and the 1-form β̃ :=
√
1− b2β satisfy

(1.8) α̃Ric = −(n− 1)k2α̃, b̃i|j = k

√
1 + b̃2ãij ,

where k is a constant number, b̃ = ∥β̃∥α̃ and b̃i|j is the covariant derivation of β̃
with respect to α̃. In this case, F is given in the following form

(1.9) F =
(
√
1 + b̃2α̃+ β̃)2

α̃
,

with (1 + b̃2)(1− b2) = 1.

(3) The Riemannian metric ᾱ := (1− b2)
3
2

√
α2 − β2 and the 1-form β̄ := (1− b2)β

satisfy ᾱRic = 0 and b̄i|j = kāij where k is a constant number, b̄ = ∥β̄∥ᾱ and b̄i|j is

the covariant derivation of β̄ with respect ᾱ. In this case, F is given in the following
form

(1.10) F =
(
√
(1− b̄2)ᾱ2 + β̄2 + β̄)2

(1− b̄2)2
√

(1− b̄2)ᾱ2 + β̄2
,

with b̄ = b.

Also, they provide a new description for square metrics with constant flag cur-
vature.

Theorem 1.5 ([10]). The Finsler metric F = (α+ β)2/α is of constant flag cur-
vature if and only if under the expression (1.10) of F , ᾱ is locally Euclidean, β̄ is
closed and s homothety with respect to ᾱ. In a suitable local coordinate, F can be
expressed by

(1.11) F =
(
√
(1− |x̄|2)|y|2 + ⟨x̄, y⟩2 + ⟨x̄, y⟩)2

(1− |x̄|2)2
√

(1− |x̄|2)|y|2 + ⟨x̄, y⟩2
,

where x̄ := cx+a for some constant number c and constant vector a. In particular,
F must be locally projectively flat with zero flag curvature.

For y ∈ TxM , define the Landsberg curvature Ly : TxM ⊗ TxM ⊗ TxM −→ R
by

Ly(u, v, w) :=
−1

2
gy(By(u, v, w), y).

A Finsler metric F is called a Landsberg metric if Ly = 0.
For y ∈ TxM , define Jy : TxM −→ R by Jy(u) := Ji(y)u

i. J is called the mean
Landsberg curvature. A Finsler metric F is called a weakly Landsberg metric if
Jy = 0. For y ∈ TxM , define the stretch curvature Σy : TxM ⊗ TxM ⊗ TxM ⊗
TxM −→ R, by Σy(u, v, w, z) := Σijkl(y)u

ivjwkzl, where

(1.12) Σijkl := 2(Lijk|l − Lijl|k),

and ′|′ denotes the horizontal derivation with respect to the Berwald connection of
F . A Finsler metric F is said to be a stretch metric if Σ = 0. Also, one can define
Mean stretch curvature Σy : TxM −→ R by Σy(u, v) := Σij(y)u

ivj , where

(1.13) Σij := 2(Ji|j − Jj|i).
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A Finsler metric F is said to be weakly stretch metric if Σ = 0. It is easy to see
that every Landsberg metric or stretch metric is a weakly stretch metric.

For an (α, β)-metric, let us define bi|j by bi|jθ
j := dbi − bjθ

j
i , where θi := dxi

and θji := Γj
ikdx

k denote the Levi-Civita connection form of α. Let

rij :=
1

2
(bi|j + bj|i), r00 := rijy

iyj .

In this paper, we prove the following.

Theorem 1.6. The Finsler metric F = (α+ β)2/α is weakly stretch if and only if
the following relationship holds:

(1.14) Ar200 +Br00 + C = 0

Above relationship is equivalent to the following two equations:

(1.15) A1r
2
00 +B1r00 + C1 = 0,

(1.16) A2r
2
00 +B2r00 + C2 = 0,

where A1, A2, B1, B2, C1, C2 are functions in terms of b2 and s.
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[6] G. Hamel, Über die Geometrien, in denen die Geraden die Kürtzesten sind, Math. Ann.
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[9] A. Rapcsák, Über die bahntreuen Abbildungen metrisher Räume,
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1. Introduction

Finsler geometry is a appropriate extension of Riemannian geometry. According
to Finsler geometry it was already discussed by Riemann in his lecture in 1854 [12].
Afterward, the systematic study of these spaces appeared in the thesis of Finsler in
1918 [8].
(α, β)-metrics form a special class of Finsler metrics to some extent, because they
are ”computable”. The significance of (α, β)-metrics was firstly suggested by M.
Matsumoto in 1972 as a direct generalization of Randers metrics [11]. In this
research we are going to concentrate on an important class of Finsler metrics called
general (α, β)-metrics, which are given as

F = αϕ(b2, s),

where α =
√
aij(x)yiyj is a Riemannian metric and β = bi(x)y

i is a 1-form on M ,

respectively. b2 = bibi, s =
β
α and ϕ is a smooth function. A Finsler metric is said

to be R-quadratic if its Riemann curvature is quadratic [7]. R-quadratic metrics
were first introduced by Báscó and Matsumoto [3].
For a Finsler space (M,F ), the Riemann curvature is a family of linear transfor-
mations

Ry : TxM → TxM,

where y ∈ TxM , with homogeneity Rλy = λ2Ry, ∀λ > 0. The Finsler metric
(M,F ) is R-quadratic if Ry is quadratic in y ∈ TxM . Here a special class of general
(α, β)-metric of R-quadratic type is considered. In general, it is difficult to find the
Riemann curvature tensor for general (α, β)-metrics. Then we consider the metrics
under the following assumption

(1.1) αRi
k = µ(α2δik − yky

i), bi|k = c(x)aik,

where αRi
k denotes the Riemann curvature of the Riemannian metric α and µ is

the Ricci constant.
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The concept of Projective Ricci curvature PRic for a Finsler metric F is defined
by Z. Shen [13], as follow

PRic = Ric+ (n− 1)

(
S|my

m

n+ 1
+

S2

(n+ 1)2

)
.

In fact, for a Finsler metric (M,F ), the Riemann curvature of a projective spray
is called Projective Riemann curvature. The Projective Ricci curvature is defined
as the Ricci curvature of the projective spray. The Projective Ricci curvature of
Finsler metric on a manifoldM is projective invariant with respect to a fixed volume
form on M .
A Finsler metric (M,F ) is called PR-quadratic if its Projective Riemann curvature
PRy is quadratic in y ∈ TxM . In this research, after considering a special class
of generalized (α, β)-metrics of R-quadratic type, the conditions for being of PR-
quadratic type are studied.

2. Main results

Theorem 2.1. Let (M,F ) be a general (α, β)-metric satisfying (1.1). Then F is
of R-quadratic type if and only if

(2.1) Ri
k = R2θ

i
pkq(x)y

pyq,

where

θj
i
kl(x) = (ajlb

2 − bjbl)δ
i
k − (ajkb

2 − bjbk)δ
i
l + (blajk − ajlbk)b

i,

and R2 = R2(r) as

R2 = −µ(2χ−sχs)+c
2[2(2ψb2 −sψb2s)−χss+2χ(2χ−sχs)+(b2−s2)(2χχss−χ2

s).

Theorem 2.2. A general (α, β)-metric (M,F ), satisfying (1.1) is of PR-quadratic
type if and only if

(2.2) Ri
k = α2

{
R1

αhik +R3s.ky
i
}
,

where R1 and R3 satisfying the following equations

α2R1 = E + µpq(x)y
pyq, − 3

n+ 1
χk = α2(2R3 + (R1)s)s.k,

and χk is the χ-curvature of F and E = S2

(n+1)2 +
s|0
n+1 .

Here R1 and R2 are the same as stated in [14].
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Weyl (GDW )-metrics. In fact, some new sub-classes of GDW -metrics are con-
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interesting examples are presented.
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1. Introduction

Two regular metrics on a manifold M are called projectively related if they have
the same geodesics as the point sets. In Physics, a geodesic represents the equation
of motion that determines the phenomena of the space. A geodesic curve c(t) in a
Finsler space (M,F ), is defined by the second order system of differential equations

d2ci

dt2
+ 2Gi(c(t), ċ(t)) = 0,

where Gi(y) are local functions on TM given by

Gi(y) :=
1

4
gil(y){ ∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl
},

for y ∈ TxM .
Projective Finsler geometry studies equivalent Finsler metrics on the same manifold
with the same geodesics as points. There are well-known projective invariants of
Finsler metrics namely Douglas curvature, Weyl curvature [2], generalized Douglas-
Weyl curvature [3].
A C-projective invariant H-curvature introduced by Akbar-Zadeh [1], too. C-

projective Weyl curvature (W̃ -curvature), the new C-projectively invariant quantity
which characterizes Finsler metrics of constant flag curvature is presented in [5].
The Finsler metrics satisfying,

Dj
i
kl|mym = Tjkly

i,

for some tensor Tjkl, where Dj
i
kl|m denotes the horizontal covariant derivatives of

Dj
i
kl with respect to the Berwald connection of F , are called GDW -metrics [3].

Although, all Douglas metrics are of GDW type, there are many GDW Finsler
metrics which are not of Douglas type. The following example presents a GDW -
metric which is not of Douglas type.
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Example 1.1 ([4]). Put Ω = {(x, y, z) ∈ R3|x2 + y2 + z2 < 1}, p = (x, y, z) ∈ Ω
and y = (u, v, w) ∈ TpΩ. Define the Randers metric F = α+ β by

α =

√
(−yu+ xv)2 + (u2 + v2 + w2)(1− x2 − y2)

1− x2 − y2
, β =

−yu+ xv

1− x2 − y2
.

The above Randers metric has vanishing flag curvature K = 0 and S-curvature
S = 0. F has zero Weyl curvature then F is of GDW metric. But β is not closed
then F is not of Douglas type.

On the other hands, the class of Douglas metrics contains all Riemannian metrics
and the locally projectively flat Finsler metrics. But, there are many Douglas
metrics which are not Riemannian. There are many Douglas metrics which are not
locally projectively flat, too.
The following example presents a Douglas metric which is not locally projectively
flat.

Example 1.2 ([8]). Define α and β by

α̃ = η
m

1−mα, β̃ = η−1β,

for some η = η(x) and β̃ is parallel with respect to α̃ where α̃ and β̃

α̃ =

√
|y|2
|u|2

, β̃ =
< x, y >

|u|2
,

and u = (u1(x), . . . , un(x)) is a vector satisfying the following

ui = −2(λ+ t < f, x >)xi + t|x|2f i + f i,

where t is a constant and f is a constant vector satisfying tf ̸= 0 and λ2+t|f |2 ̸= 0.
Then the m-Kropina metric F = αmβ1−m is Douglasian but not locally projectively
flat, where m ̸= 0, 1.

Based on Douglas curvature, a new class of Finsler metrics so called D̄-metrics
is introduced which includes all the Douglas metrics.
A Finsler metric F is called D̄-metric if Dj

i
kl|m−Dj

i
km|l = 0 or equivalently

Dj
i
kl|mym = 0.

Clearly, the class of D̄-metrics contains all Douglas metrics but there are many
D̄-metrics which are not Douglas. It means that

{Locally Projectively Flat} $ {Douglas metrics}
$ {D̄ −metrics}
$ {GDW-metrics}.

There are other interesting classes of Finsler metrics which are the subset of the class
of GDW -metrics. R-quadratic and PR-quadratic Finsler metrics are some great
examples of them. The Riemann curvature is one of the important quantities, in
Finsler geometry. For a Finsler space (M,F ), the Riemann curvature is a family of
linear transformations

Ry : TxM → TxM,

where y ∈ TxM , with homogeneity Rλy = λ2Ry, for every λ > 0. R-quadratic
Finsler spaces form a rich class of Finsler spaces which were introduced by Z. Shen
and could be considered as a generalization of Berwald metrics. A Finsler metric
(M,F ) is called R-quadratic if its Riemann curvature Ry is quadratic in y ∈ TxM .
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In [6], it is proved that every R-quadratic Finsler metric is a GDW -metric.
However, the tensors which contain both Ricci curvature Ric = Ric(x, y) and S-
curvature S = S(x, y) are more applicable [7]. Here, the Ricci curvature is defined
as the trace of the Riemann curvature. For a Finsler metric (M,F ), the Riemann
curvature of a projective spray is called Projective Riemann curvature (PRy). The
Projective Ricci curvature is defined as the Ricci curvature of the projective spray,
too.
The concept of Projective Ricci curvature PRic for a Finsler metric F is defined
by Z. Shen [7], as follows

PRic = Ric+ (n− 1)
(S|mym

n+ 1
+

S2

(n+ 1)2
)
.

The Projective Ricci curvature of Finsler metrics on a manifold M is projective
invariant with respect to a fixed volume form on M .
A Finsler metric (M,F ) is called PR-quadratic if its Projective Riemann
curvature PRy is quadratic in y ∈ TxM .
It is proved that this class of Finsler metrics contains the class of Douglas metrics
(D(M)) and belongs to the class of GDW -metrics (GDW (M)).
This paper also defines a new quantity in Finsler geometry, so-called generalized

Berwald projective Weyl (GBW̃ ) curvature, which is a C-projective invariant.

For manifold M , let GBW̃ (M) denotes the class of all Finsler metrics
satisfying

Bj
i
kl = βj

i
kl + bjkly

i,

for some tensors bjkl and βj
i
kl; where βj

i
kl|mym = 0.

A natural question that could be raised is: ”How large is GBW̃ (M) and what kind
of interesting metrics does it have?”
It is clear that all Berwald metrics belong to this class. However, the Berwald

metrics are not C-projective invariants. It is shown that the class of GBW̃ -metrics
is the proper subset of the class of GDW -metrics.

2. Main results

In this section, the main results of this research are presented.
For convenience, we use the following notations. For Finsler manifold (M,F ),
D(M) denotes the class of all Douglas metrics,
B(M) denotes the class of all Berwald metrics,
D̄(M) denotes the class of all D̄-metrics,

GBW̃ (M) denotes the class of all Generalized Berwald Projective Weyl (GBW̃ )-
metrics,
GDW (M) denotes the class of all Generalized Douglas Weyl (GDW )-metrics,
PRq(M) denotes the class of all PR-quadratic Finsler metrics,
Rq(M) denotes the class of all R-quadratic Finsler metrics,
on the manifold M .

Definition 2.1. A Finsler metric F is called D̄-metric if Dj
i
kl|m − Dj

i
km|l = 0

or equivalently Dj
i
kl|mym = 0

Theorem 2.2. For a Finsler manifold (M,F ), D(M) is a proper subset of D̄(M)
and D̄(M) is a proper subset of GDW (M).
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Definition 2.3. A Finsler metric (M,F ) is called PR-quadratic if its Projective
Riemann curvature PRy is quadratic in y ∈ TxM .

Theorem 2.4. For a Finsler manifold (M,F ), D(M) is a proper subset of PRq(M)
and PRq(M) is a proper subset of GDW (M).

Definition 2.5. A Finsler metric F is called GBW̃ if its Berwald curvature satisfies

Bj
i
kl = βj

i
kl + bjkly

i,

for some tensors bjkl and βj
i
kl; where βj

i
kl|mym = 0.

Theorem 2.6. For a Finsler manifold (M,F ), Rq(M) (and then B(M)) is a

proper subset of GBW̃ (M) and GBW̃ (M) is a proper subset of GDW (M).
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1. Introduction

Very recently, Chen, Shen, and Zhao introduced a new class of Finsler metric
that is an extension of the Finsler geometry of the concept of the warped product
structure on an n-dimensional manifold M := I × M̆ where I is an interval of R
and M̆ is an (n− 1)-dimensional manifold equipped with a Riemannian metric, [1].
In fact, it is considered in the following form:

F (u, v) = ᾰ(ŭ, v̆)ϕ

(
u1,

v1

ᾰ(ŭ, v̆)

)
,(1.1)

where u = (u1, ŭ), v = v1 ∂
∂u1 + v̆ and ϕ is a suitable function defined on a domain

of R2. Throughout this paper, the index conventions are as follows:

1 ≤ A ≤ B ≤ . . . ≤ n, 2 ≤ i ≤ j ≤ . . . ≤ n.

The class of spherically symmetric Finsler metrics can be regarded as Finsler warped
product metrics. The flag curvature and Ricci curvature of Finsler warped product
metrics are obtained by Chen-Shen-Zhao, [1]. In [4], Gabrani, Rezaei, and Sevim
characterized Finsler warped product metrics with isotropic mean Berwald curva-
ture. Moreover, they studied and classified the Landsberg Finsler warped product
metrics [3]. Moreover, Gabrani, Rezaei, and Sevim studied the volume form dV on
an n-dimensional manifold, which admits the Finsler warped product metrics, to
introduce and classify the S-curvature of Finsler warped product metrics [2].

We have the following result for Finsler warped product metrics.

Theorem 1.1. Let F (u, v) = ᾰ(ŭ, v̆)ϕ

(
u1,

v1

ᾰ(ŭ, v̆)

)
be a non-Riemannian Douglas

Finsler warped product metric on an n-dimensional manifold M (n ≥ 3), where

u = (u1, ŭ), v = v1
∂

∂u1
+ v̆ and ϕ ∈ C∞. If F has relatively isotropic Landsberg

curvature, then either

1. F is Berwaldian or
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2. F is a Randers metric that is of the following form

F =
2cv1 +

√
(4c2 + σa1(r)) (v1)2 − σa4(r)ᾰ2

σ
,(1.2)

where c = c(r) ̸= 0, σ = σ(u) ̸= 0, a1 = a1(r) and a4 = a4(r) are differen-
tiable functions.

Then, we give the following examples to see the geometric view of the theorems.

Example 1.2. Take c(r) = r, σ = λ, a1(r) = [p(r)+ 1
2q(r)]r

2 and a4(r) = − 1
2q(r)r

2

in (1.2); then, we have the following example obtained by Zhao Yang and Xiaoling
Zhang:

F =
2rv1 +

√(
4c2 + λp(r) + 1

2λq(r)
)
r2(v1)2 + 1

2λq(r)r
2ᾰ2

λ
.

Then, F is a new warped product Finsler metric with relatively isotropic Landsberg
curvature, [5].

2. Preliminaries

In this section, we briefly introduce some geometric quantities and definitions in
Finsler geometry to prove the main theorems in this paper.

Let M be an n-dimensional manifold. It is known that a Finsler metric is a
nonnegative function F (u, v) on TM , which has the following properties.

(a) F (u, v) is C∞ on TM\{0};
(b) the restriction Fu := F|TuM is a Minkowski function on TuM for all u ∈ M .

Assume that F is a Finsler metric on an n-dimensional manifold M . In local

coordinates u1, . . . , un and v = vA
∂

∂vA
, G = vA

∂

∂uA
− 2GA ∂

∂vA
is a spray induced

by F . The spray coefficients GA are locally expressed as follows:

GA :=
1

4
gAB{[F 2]uCvBvC − [F 2]uB},

where gAB(u, v) =
[
1
2F

2
]
vAvB and (gAB) = (gAB)

−1.

The Cartan torsion of a Finsler metric is given by

CIJK =
1

2

∂gIJ
∂vK

.

Then, the mean Cartan torsion I = IMduM is defined by

IM := gJKCMJK .(2.1)

Moreover, the Landsberg metrics are defined by

LCDE := −1

2
FFvA

∂3GA

∂vC∂vD∂vE
= 0.(2.2)

It is known that the mean Landsberg curvature J = JMduM is defined by

JM := gJKLMJK .(2.3)

A Finsler metric is considered to be of relatively isotropic Landsberg curvature
if L + cFC = 0, where c = c(u) is a scalar function on the manifold. It is known
that a Finsler metric F is of relatively isotropic mean Landsberg curvature if and
only if J+ cF I = 0.
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Proposition 2.1. Let F (u, v) = ᾰ(ŭ, v̆)ϕ
(
u1, v1

ᾰ(ŭ,v̆)

)
be a non-Riemannian Finsler

warped product metric on an n-dimensional manifold M where u = (u1, ŭ), v = v1
∂

∂u1
+ v̆

and ϕ ∈ C∞. Then, F has relatively isotropic Landsberg curvature if and only if
there exist functions c = c(r) and ai(r), i ∈ {1, 2, 3, 4}, such that

Ψ = cϕ+ a1(r)s+ a2(r),(2.4)

A =
1

2
s2a3(r)− a2(r)s+ a4(r).(2.5)

3. Proof of main theorems

Now, we will classify the Douglas Finsler warped product metrics with relatively
isotropic Landsberg curvature.

Proof of Theorem 1.1: Assume that F has relatively isotropic Landsberg
curvature. Then, (2.4) and (2.5) hold. Assume that F is of a Douglas type Finsler
warped product metric. Then, we obtain a2(r) = 0. Thus,

Ψ = cϕ+ a1(r)s,(3.1)

A =
1

2
s2a3(r) + a4(r).(3.2)

We consider the following cases:

Case 1. c = 0, then A = 1
2s

2a3(r) + a4(r) and Ψ = a1(r)s, which means that F is
Berwaldian.

Case 2. c ̸= 0: In this case, by the proof of Proposition 4 in [2], we can see that
if F = ᾰϕ(r, s) is a Finsler warped product metric where ϕ satisfies (3.1)
and (3.2), then either F is a Randers warped product (Riemann warped
product included), which can be formulated by

F =
2cv1 +

√
(4c2 + σa1(r)) (v1)2 − σa4(r)ᾰ2

σ
,

where c = c(r) ̸= 0, σ = σ(u) ̸= 0, a1 = a1(r) and a4 = a4(r) are differen-
tiable functions; or F is a singular Kropina warped product metric, which
we omit.

�
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ON LANDSBERG QUINTIC FINSLER METRICS

JILA MAJIDI, AKBAR TAYEBI, AND ALI HAJI-BADALI

Abstract. In this paper, we study a class of 5-th root (α, β)-metrics. We
show that the Landsberg 5-th root (α, β)-metric has vanishing S-curvature.

Key words and phrases: Landsberg curvature; S-Curvature; m-th root;

(α, β)-metric.

1. Introduction

Let F = F (x, y) be a Finsler metric on tangent bundle TM defined as

F = m
√
A, where A := ai1...im(x)yi1yi2 . . . yim and ai1...im are symmetric in all its

indices. Then, F is called an m-th root Finsler metric on the manifold M . The class
of m-th root Finsler metrics has been developed by Shimada in [3], and applied to
biology as an ecological metric by Antonelli in [1].

The fifth root metrics F = 5
√
aijklp(x)yiyjykylyp are called the quintic metrics.

In order to understand the structure of quintic root metrics, one can study the
non-Riemannian curvatures of these metrics. Among these quantities, the mean
Landsberg curvature J and the S-curvature S have important and deep relation
with each other. Let us give a brief explanation of their relations. The distortion
τ = τ(x, y) is a non-Riemannian quantity that is determined by the Busemann-
Hausdorff volume form. The vertical and horizontal derivations of distortion τ on
each tangent space give rise to the mean Cartan torsion I := τysdxs and S-curvature
S = τ|ty

t.

Theorem 1.1. Let F = 5
√
c1α4β + c2α2β3 + c3β5 be an (α, β)-metric on a mani-

fold M . Then L = 0 if it is a Berwald metric.

2. Preliminaries

Let F = αϕ(s), s = β/α, be an (α, β)-metric, where ϕ = ϕ(s) is a C∞ on

(−b0, b0) with certain regularity, α =
√

ajt(x)yjyt is a Riemannian metric and
β = bj(x)y

j is a 1-form on a manifold M . For an (α, β)-metric, let us define bj;k
by bj;kθ

k := dbj − bkθ
k
j , where θj := dxj and θkj := Γk

jsdx
s denote the Levi-Civita

connection form of α. Let

rit : =
1

2
(bi;t + bt;i), sit :=

1

2
(bi;t − bt;i), ri0 := rity

t, r00 := rity
iyt, rt := birit,

si0 : = sity
t, st := bisit, sit = aissst, si0 = sity

t, r0 := rty
t, s0 := sty

t,
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where ait = (ait)
−1 and bi := aitbt. Put

Q :=
ϕ′

ϕ− sϕ′ , Θ :=
ϕϕ′ − s(ϕ′ϕ′ + ϕϕ′′)

2ϕ((ϕ− sϕ′) + (B − s2)ϕ′′ ,

Ψ :=
ϕ′′

2[(ϕ− sϕ′) + (B − s2)ϕ′′]
,(2.1)

where B := ||β||2α. Let Gt = Gt(x, y) and Gt
α = Gt

α(x, y) denote the coefficients of
F and α, respectively, in the same coordinate system. By definition, we have

Gt = Gt
α + αQst0 + (r00 − 2Qαs0)(α

−1Θyt +Ψbt),(2.2)

where

P :=
[
− 2Qαs0 + r00

]
Θα−1, Qt := Ψ

[
r00 − 2αQs0

]
bt + αQst0.

Clearly, if β is parallel with respect to α, that is rij = 0 and sij = 0, then P = 0
and Qi = 0. In this case, Gi = Gi

α are quadratic in y. In this case, F is a Berwald
metric. Put

Φ : = (sQ′ −Q){n∆+ sQ+ 1} − (B − s2)(sQ+ 1)Q′′.

By a direct computation, we can obtain a formula for the mean Cartan torsion of
(α, β)- metrics as follows

Ij = − (ϕ− sϕ′)Φ

2∆ϕα2
(αbj − syj).(2.3)

Thus I = 0 if and only if Φ = 0.

3. Proof of Theorem 1.1

The Landsberg tensor L = Lijk(x, y)dx
i ⊗ dxj ⊗ dxk is defined by

Lijk := −1

2
FFym [Gm]yiyjyk .

In [2], Shen obtained the following form of the expression for Ljkl .

Lemma 3.1. Let

Ljkl = − ρ

6α5

{
hjhkCl + hjhlCk + hkhlCj + 3Ejhkl + 3Ekhjl + 3Elhjk

}
,(3.1)

where

ρ := ϕ(ϕ− sϕ), hj := αbj − syj , hjk := α2ajk − yjyk, Cj := (X4r00 + Y4αs0)hj + 3ΛJj ,

µ :=
−1

3
(Q− sQ′), Jj := α2(sj0 +

rj0
∆

+
−Q

∆
αsj)− (

r00
∆

+Παs0)yj ,

Λ := −Q′′, Ej := (X6r00 + Y6αs0)hj + 3µJj),

Y 4 := −2QX4 +
3Q′Q′′

∆
, Y 6 := −2QX6 +

Q′(Q− sQ′)

∆
,

X4 :=
1

(2∆2)
(−2∆Q′′′ + 3(Q− sQ′)Q′′ + 3(B − s2)(Q′′)2),

X6 :=
1

2∆2
((Q− sQ′)2 +

(
2(s+BQ)− (B − s2)(Q− sQ′)

)
Q′′).
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Let F = αϕ(s), s = β/α, be an (α, β)-metric on an n-dimensional manifold M .
Then the S-curvature of F is given by

S =
[
2Ψ− f ′(b)

bf(b)

]
(s0 + r0)−

Φ

2∆2α
(r00 − 2Qαs0),(3.2)

where

f(b) :=

∫ π

0
sinn−2 t T (b cos t)dt∫ π

0
sinn−2 tdt

, T (s) := ϕ(ϕ− sϕ′)n−2
[
(ϕ− sϕ′) + (b2 − s2)ϕ′′].

Here, we calculate the S-curvature of 5-th root (α, β)-metric and obtain the follow-
ing.

Lemma 3.2. The S-curvature of 5-th root (α, β)-metric is given by

S =
1

2s2AB

{
3c22s

2 + 13c2c3s
4 + 10c23s

6 + 3c1c2 + 10c1c3s
2 − f ′(b)

bf(b)

}(
s0 + r0

)
− 1

4αA2B2s3

{
8c2c

3
3s

12 − 3c42b
2s4 − 20c43b

2s12 − 60nc1c
2
2c3s

6 − 112nc2c1c
2
3s

8

+ 36nc1c
4
2b

2s6 + 120nc1c2c
3
3b

2s12 + 640nc1c
4
3b

2s14 + 38nc42c3b
2s10 + 12nc32c

2
3b

2s12

+ 2456nb2c22c
3
3s

14 + 2240nb2c2c
4
3s

16 − 56nc21c
2
2c3s

8 − 12nc21c2c
2
3s

10 − 30nc1c
3
2c3s

10

− 94nc1c
2
2c

2
3s

12 − 120nc1c2c
3
3s

14 − 6c42s
6 − 20nc21c2c3s

4 − 58c1c3b
2c22s

4 − 136c1c
2
3s

6

− 42nc32c3s
8 − 10nc22c

2
3s

10 − 10nc2c
3
3s

12 − 64nc33c1s
10 − 34b2c21c2c3s

2 + 4c21c2c3s
4

+ 80nc53b
2s18 − 4nc21c

2
3s

6 + 36nb2c52s
8 + 4c1c

3
2s

4 − 80nc53s
20 + 4c21c

2
2s

2 − 8nc21c
3
2s

6

− 10nc32c1s
4 − 24nc22c

3
3s

16 − 36nc1c
4
2s

8 − 96nc21c
3
3s

12 − 64nc1c
4
3s

16 − 38nc42c3s
12

− 62c2c
3
3b

2s10 − 2240nc2c
4
3s

18 + 28c1c
2
2c3s

6 + 80c1c2c
2
3s

8 + 8c22c
2
3s

10 − 9c1c
3
2b

2s2

− 21c32c3b
2s6 − 60b2c22c

2
3s

8 − 80c1c
3
3b

2s8 − 60c21c
2
3b

2s4 − 40c43s
14 − 130nc32c

2
3s

14

− 36c52s
10 + 48c1c

3
3s

10 + 48c21c
2
3s

6 + 56b2c21c
2
2c3s

6 + 128nc21c2c
2
3b

2s8 − 4nc21c
2
2s

2

+ 8nb2c21c
3
2s

4 + 944nb2c1c
2
2c

2
3s

10 + 304nb2c1c
3
2c3s

8

+ 96nc21c
3
3b

2s10
}(

r00 + (c1 + 3c2s
2 + 5c3s

4)s0

)
,

(3.3)

where

A :=− c2s
2 − c3s

4 + 2c1c2b
2s2 + 4c1c3b

2s4 + 6c22b
2s4 + 22c2c3b

2s6 + 20c23b
2s8

− 2c1c2s
4 − 4c1c3s

6 − 6c22s
6 − 22c2c3s

8 − 20c23s
10,

B :=c2 + 2c3s
2,

T :=(c1s+ c2s
3 + c3s

5)
(
c1s+ c2s

3 + c3s
5 − s(c1 + 3c2s

2 + 5c3s
4)
)n−2

{
c1s

+ c2s
3 + c3s

5 − s(c1 + 3c2s
2 + 5c3s

4) + (b2 − s2)(6c2s+ 20c3s
3)
}
.

Now, we study weakly Landsberg 5-th root (α, β)-metrics and prove the follow-
ing.

Theorem 3.3. Let F = 5
√
c1α4β + c2α2β3 + c3β5 be a Landsberg (α, β)-metric.

Then F has vanishing S-curvature.
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Proof. Suppose F is Landsberg, that is

L = 0.(3.4)

By Lemmas 3.1, we calculate Ljkl and contract Ljkl with bjbkbl , we have

L = f2α
4 + f1α

2 + f0 = 0,(3.5)

where

f2 : = 407r00c
2
2 − 368r00c3Bc2 + 656βs0c2c3 − 120Bβc23r0 − 250βs0c

2
3b

2 + 30B2c23r00

+ 200Br00b
2c23 + 48βc2c3r0 − 440c2c3r00b

2 + 432r00c3c1 − 115βs0c
2
3B,

f1 : = −70β2r00c
2
3B − 100β2c23r00b

2 + 266β2r00c2c3 + 150β3s0c
2
3,

f0 : = 60β4r00c
2
3.

By assumption, we have L = 0. Using (3.5) imply that there exists a non-zero
function g = g(x, y) of degree 4 in y such that

β4r00c
2
3 = gα2.(3.6)

This contradicts with the positive-definiteness of α. Thus rij = 0. Putting it into
(3.5), we obtain

L = s0(−656c2 + 250b2c3 + 115c3B)α2 − 150s0β
2c3 = 0.(3.7)

Similarly, (3.7) implies that there exists a non-zero function h = h(x, y) of degree
1 in y such that the following holds

s0β
2c3 = hα2.(3.8)

This contradicts with the positive-definiteness of α. Thus si = 0. By substituting
rij = 0 and si = 0 for (3.3), we find

S = 0.(3.9)

the proof is complete. �
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ON A CLASS OF QUASI-EINSTIEN(α, β)-METRICS

SAEEDEH MASOUMI AND BAHMAN REZAEI

Abstract. In this paper, we introduce the notion of quasi-Ricci and weakly
quasi-Einestien for Finsler metrics, which is the combination of the Ricci cur-
vature and the S-curvature. We study quasi-Einestien kropina metric on a

manifold of dimensional n ≥2. Furthermore, by supposing a quasi-Einestien
Kropina metric, we find sufficient conditions under which a Kropina metric
has quasi-Ricci flat.

Key words and phrases: Finsler metric; (α, β)- metric; quasi-Einetien;
quasi-Ricci flat.

1. Introduction

In 2012, Zhang and Shen introduced the condition of Einestien Kropina metric

[11]. They proved a non-Riemannian Kropina metric F = α2

β with constant Killing

from β on a manifold M with dimensional n ≥ 2, is an Einstien metric if and only
if Riemannian metric α is an Einestien metric. J. Case and Y. Shu , G. Wei studeid
m-quasi-Einestien on manifold Reimannein [15, 14, 7].
Recently, Ohta introduced a definition of N -Ricci curvature [5]. Quasi-Einstein
Finsler metric is a generalization of Einstein metric in Finsler geometry, which
is investigated by H.Zhu [13]. We will generalize N -quasi Einestein in Finsler
geometry [2, 5]. Suppose (M,F ) is manifold Finsler n- dimensional with measure
dVF = e−fdVBH , is called N - weakly quasi-Einstein if it satisfies

Ric+
.

S − S2

N − n
= (n− 1)(c+

3θ

F
)F 2,

where
.

S is the covariant derivative of S along a geodesic of F and c = c(x) is scalar
function and θ is a 1- form on M . If θ = 0 and N = ∞ ,then Finsler metric F
is called quasi-Einstein. Furthermore, quasi-Einstein Finsler metric F be is called
quasi-Ricci flat if c = 0.
In 2022, Zhu studied quasi-Einstein square metrics. He found the structure of
quasi-Ricci flat square metric which is the famous Berwalds metric.
In 2007, Li-Shen studied (α, β)-metrics of constant flag curvature [4, 1]. The Ricci-
curvature and S-curvature have important and fundamental topic in Finsler Ge-
ometry [9, 8, 10].
In this paper, we are going to study quasi-Einestien Kropina metrics. Firstly, we
verify essential conditions for a Kropina metric. Finally, we determine the structure
of quasi-Einstein and quasi-Ricci flat for the Kropina metric. The main theorem is
as follows
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Theorem 1.1. Let F = α2

β be a Kropina metric on n-dimensional manifold M

with volum form dV = e−fdVα. Then it is a quasi-Einstein Finsler metric if and
only if

sijs
j
i = −2

[
2c(n− 1) + sisi

]
,(1.1)

CaseI:Assume n ̸= 2
A: if Finsler metric F be regullar then:

Ricα =
1

B2

[
(n− 2)

(
s20 − σ2β2

)
− 2(n− 2)σs0β

]
− 1

B

[
2s0|0 − 2f0s0

]
− f0|0 + ηα2,

B: if Finsler metric F be singullar then

Ricα = (n− 2)

(
s20 − σ2β2

)
− 2(n− 2)σs0β − 2s0|0 + 2f0s0 − f0|0 + ηα2.

2. Preliminaries

Let (M,F ) be a Finsler space.A spray on M is a smooth vector field G on
tangent space TM0 expressed in a standard local coordinate system (xi, yi) in TM
as follows G(x, y) = yi ∂

∂xi −2Gi(x, y) ∂
∂yi , where G

i(x, y) are local functions on TM

satisfying

Gi(x, λy) = λ2Gi(x, y), λ > 0.

The Riemann curvature Ry = Ri
k(y)

∂Gi

∂xi ⊗ dxk is expressed

Ri
k := 2

∂Gi

∂xk
− yj

∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

Ricci curvature is the trace of the Riemann curvature, which is called by Ric := Rm
m.

(α, β)-metric is a special class of Finsler metrics and can be defined by the form
F := αϕ(s), s = α

β , where α is Riemann metric and β is one form. It is known

that is positive and strongly convex on TM0 if and only if

ϕ(s)− sϕ′(s) +
(
B − s2

)
ϕ′′(s) > 0,

where B := aijbibj =∥β∥2α. The spray coefficients of (α, β)-metrics are given by [3]

Gi = Gi
α +Qi,

where Qi := αQsi0 + θ

(
r00 − 2αQs0

)
yi

α + ψ

(
r00 − 2αQs0

)
bi, and

Q =
ϕ′

ϕ− sϕ′
, θ =

(
ϕ− sϕ′

)
ϕ′ − sϕ′ϕ′′

2ϕ

[
ϕ− sϕ′ + (B − s2)ϕ′′

] ,
ψ =

ϕ′′

2

[
ϕ− sϕ′ + (B − s2)ϕ′′

] , Gi
α =

1

4
aij

[
[α2]xlyjyk − [α2]xj

]
,

are the spray coefficients of the Riemannian metric α.

Definition 2.1. Let F be measureable Finsler metric with volum form dVF =
e−fdVBH on TM0. Then combination of the Ricci curvature and S-curvature is
called quasi-Rcci curvature by

Qric := Ric+
.

S,(2.1)
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where
.

S is the covariant derivative of S along a geodesic of F and Ric := Rm
m.

3. Quasi-Einestien-Kropina metric

Lemma 3.1. Let F = α2

β be a kropina metric an n−dimesional manifold M . Then

quasi-Ricci curvature of F is given by

Ric+
.

S=Ricα + f0|0 −
sijs

j
iF

2

4
+ F

(
fxisi0 − si0|i

)
− 1

B2

(
(n− 2)s20 + 2r00r

+ r20 − 8r0s0 + 2rs0F
)
+

1

B

[
riir00 + r00|b + ri0|0b

i − r0ir
i
0 − 3r0is

i
0 − 2s0|0

− 3

2
αsis

i
0F − ris

i
0F − 1

2
si|0Fb

i ++s0|bF + s0r
i
iF − 3

2
ri0F

− sis
iF 2

2
+ ris

i
0F + r0|0 − fbr00 − fbs0F + 2f0s0

]
− (n+ 7)

F 2B2
r200

− 1

F

[
2(n+ 3)r00s0 −

10r00r0
B2

+
2r00|0 − 2f0r00

B

]
.(3.1)

Proof. The spray coefficients of F = α2

β are given by

Gi = Gi
α + αQsi0 + θ(r00 − 2αQs0)

yi

α
+Ψ(r00 − 2αQs0)b

i,(3.2)

where Q = − 1

2s
, ψ =

1

2B
, θ = − s

B
.

By (2.1) and consider the Lemma [13] and proposition [12], we can show (3.1).
�

Now we have the following proof of theorem 1.1.

Proof. Let F be a quasi-Einestein kropina metric. Then, by means quasi-Einestein
and lemma 3.1. we have

α

Ric +T i
i+

.

S −(n− 1)cF 2 = 0,

where c = c(x) is a scalar function. we have
CaseI: Assume n ̸= 2. In this case, we show

Ricα =
1

B2

[
(n− 2)

(
s20 − σ2β2

)
− 2(n− 2)σs0β

]
− 1

B

[
2s0|0 − 2f0s0

]
− f0|0 + ηα2.

where η = η(x)is a scalar function. �
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HARMONIC VECTOR FIELDS IN FINSLER GEOMETRY

MIR AHMAD MIRSHAFEAZADEH AND BEHROZ BIDABAD

Abstract. The article discusses various mathematical concepts related to
Finsler manifolds, which are spaces that have a metric that varies depend-
ing on direction. The authors define the horizontal differential, divergence,
and p-harmonic form on such manifolds. They then prove a theorem that re-

lates harmonic forms to the vanishing of the horizontal Laplacian. This leads
to a new way of defining harmonic vector fields in Finsler geometry. The ar-
ticle also presents a Bochner-Yano type classification theorem based on the
harmonic Ricci scalar. Finally, the authors demonstrate that closed orientable

Finsler manifolds with a positive harmonic Ricci scalar have zero Betti num-
ber, which is a topological invariant that measures the number of holes in a
space.

Key words and phrases: Finsler geometry; Harmonic vector field; Betti
number.

1. Introduction

The Hodge Laplacian operator is a differential operator that acts on differential
forms on a manifold. It is defined as the sum of the exterior derivative and its
adjoint, followed by the codifferential and its adjoint. In other words, it is the
composition of the Laplace-Beltrami operator and the Hodge star operator.

One of the main applications of the Hodge Laplacian operator is in the study of
harmonic forms and harmonic maps. A differential form ω is called harmonic if it
satisfies the equation ∆ω = 0, where ∆ is the Hodge Laplacian operator. Harmonic
forms play an important role in various areas of mathematics and physics, including
topology, geometry, and quantum field theory.

Another application of the Hodge Laplacian operator is in the study of eigen-
values and eigenfunctions of Laplace-Beltrami operators. The eigenvalues of the
Hodge Laplacian operator are related to the spectrum of the Laplace-Beltrami op-
erator, and they provide important information about the geometry and topology
of the underlying manifold.

Overall, the Hodge Laplacian operator is a powerful tool in differential geometry
and its applications, providing insights into the structure and behavior of geometric
objects on manifolds [4].

In order to extend the notion of a harmonic vector field to Finsler manifolds,
we need to first define what we mean by the Laplace-Beltrami operator on such
manifolds.

For a Riemannian manifold, the Laplace-Beltrami operator is defined as the
divergence of the gradient of a function. However, in Finsler geometry, there is no
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natural notion of a gradient, since the metric structure is not necessarily induced
by a smooth inner product.

One way to overcome this difficulty is to use the concept of a spray. A spray is
a vector field on a Finsler manifold that satisfies certain properties, such as being
tangent to the unit sphere at each point and having a unique geodesic passing
through each point with a given initial velocity.

Using sprays, we can define a Finsler Laplacian operator as follows: given a
smooth vector field X on a Finsler manifold M , we can define its Finsler divergence
div(X) as the trace of the covariant derivative of X with respect to the spray.
Then, we can define the Finsler Laplacian of a smooth function f on M as
∆f = div(grad(f)), where grad(f) is the gradient of f with respect to the spray.

With this definition, we can extend the notion of a harmonic vector field to
Finsler manifolds by requiring that its divergence is zero with respect to the Finsler
Laplacian operator. That is, a vector field X on a Finsler manifold M is said to
be harmonic if div(X) = ∆f(X) = 0, for some smooth function f on M . This
definition captures the idea that a harmonic vector field on a Finsler manifold
preserves the harmonic structure of the manifold in a way that is compatible with
the Finsler metric [3].
The Betti number is a numerical invariant that measures the number of holes in
a topological space. It is named after Enrico Betti, an Italian mathematician who
introduced it in the 19th century. The Betti number is defined as the rank of the
corresponding homology group, which is a mathematical tool used to study the
structure of spaces.

The Betti number has many applications in various fields of mathematics and
science. For example, in algebraic geometry, it is used to study the topology of
algebraic varieties, which are geometric objects defined by polynomial equations.
In topology, the Betti number is used to distinguish different types of surfaces and
higher-dimensional spaces. In physics, it has applications in the study of phase
transitions and the behavior of materials.

One important application of the Betti number is in the classification of mani-
folds. A manifold is a mathematical object that locally looks like Euclidean space,
and it can have a nontrivial topology. The Betti numbers of a manifold provide
information about its topology and can be used to distinguish between different
types of manifolds. For example, the Betti numbers of a sphere are different from
those of a torus, which in turn are different from those of a Klein bottle.

Overall, the Betti number is a powerful tool in topology and geometry that
helps us understand the structure of spaces and their properties. Harmonic vector
fields have applications in various fields of physics and mathematics, including
fluid mechanics, electromagnetism, and differential geometry. In fluid mechanics,
harmonic vector fields correspond to the steady-state flow of a fluid, and are used
to model the behavior of fluids in various settings. In electromagnetism, they are
used to describe the behavior of electromagnetic fields in a vacuum. In differential
geometry, harmonic vector fields are used to study the geometry of Riemannian
manifolds, and have applications in the study of minimal surfaces and the theory
of relativity. Overall, harmonic vector fields are a powerful tool for understanding
the behavior of physical systems and the geometry of mathematical spaces [2].
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2. Main results

Definition 2.1. Let (M,F ) be a Finsler manifold and

φ =
1

p!
φi1 ···ip(z)dx

i1 ∧ · · · ∧ dxip ∈ ΛH
p ,

a horizontal p-form on SM . A horizontal differential operator is a differential
operator on SM given by {

dH : ΛH
p −→ ΛH

p+1

φ 7−→ dH φ
(2.1)

where, for 1 ≤ i, ik ≤ n and 1 ≤ k ≤ p, we have

dH φ =
1

(p+ 1)!

(
∇iφi1 ···ip −∇i1

φii2···ip − · · · − ∇ipφi1 ···ip−1i

)
dxi ∧ dxi1 ∧ · · · ∧ dxip .

(2.2)

Let φ and π be the two arbitraries horizontal p-forms on SM with the compo-
nents φi1 ···ip and πi1 ···ip , respectively. We consider an inner product (., .) on ΛH

p as
follows

(φ, π) :=

∫
SM

1

p!
φi1 ···ip πi

1
···ip η,(2.3)

where, φi1 ···ip = gi1 j1 · · · gipjpφj1···jp .

Definition 2.2. Let (M,F ) be a Finsler manifold and ψ a horizontal (p+1)-form
on SM , given by

ψ =
1

(p+ 1)!
ψii1 ···ipdx

i ∧ dxi1 ∧ · · · ∧ dxip .

We define the horizontal divergence (co-differential) of ψ by

(δH ψ)j1···jp := −gij(∇iψjj1···jp − ψjj1···jp∇0Ti).(2.4)

Definition 2.3. Let (M,F ) be a Finsler manifold. A horizontal Laplacian on SM
is defined by

∆H := dHδH + δHdH,(2.5)

where dH and δH are horizontal differential and horizontal co-differential operators
on SM , respectively.

Theorem 2.4 ([1]). Let (M,F ) be a closed Finsler manifold. If ω is a horizontal
p-form on SM , then

∆H ω = 0 if and only if dH ω = 0, and δH ω = 0.(2.6)

Definition 2.5. A horizontal p-form φ on SM is called horizontally harmonic if
we have

∆H φ = 0.

The horizontal harmonic p-forms will be referred to in the suite as h-harmonic
p-forms or simply h-harmonic.
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Definition 2.6. Let (M,F ) be a Finsler manifold. A vector field X = Xi(x)
∂

∂xi
onM is called harmonic related to the Finsler structure F if the associate horizontal
1-form X = Xi(z)dx

i is h-harmonic on SM .

Theorem 2.7 ([1]). Let (M,F ) be a Finsler manifold. Every cohomology class
H1(M) contains a unique harmonic representative.

Let X = Xi(x)
∂

∂xi
be a vector field on (M,F ). We define the harmonic Ricci

scalar R̃ic as follows

R̃ic(X,X) := XkXtRtk −Xk∇̇rX
jRr

jk −Xk∇kX
j∇0Tj .(2.7)

Theorem 2.8 ([1]). Let (M,F ) be a closed Finsler manifold and X a harmonic
vector field on M.

1. If R̃ic = 0, then X is parallel.
2. If R̃ic > 0, then X vanishes.

Theorem 2.9 ([1]). In a closed orientable Finsler manifold with a positive har-

monic Ricci scalar R̃ic > 0, the first Betti number vanishes.
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Abstract. In this pepar we study the special form of wieghed Ricci Curvature
which called Quasi-Einstein Finsler metric in Randers metrics.
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1. Introduction

In Finsler manifold we would like to have a measure. Riemannian manifold have
a unique canonical measure, but chossing measure in Finsler manifold isnt simple.
Let (M,F,m) be a Finsler measured manifold, where (M,F ) be a Finsler manifold
with metric F and m be a positive C∞ on M. For N ∈ R/{n} Ohta intorduced
Finsler Weighed Ricci Curvature as following

RicN (x) := Ric(x) + ψ′′
η (0)−

ψ′
η(0)

2

N − n
,

where ψ and η respectively are C∞ in R and M [2].
Let N → ∞, then the following arise;

Ric∞(x) = Ric(x) + ψ′′
η (0).

Z. Shen in 1997 introduced new quantity that called S-curvature[6].
Substitute ψ′

η(0) with quantity S(x) apear the following equation,

Ric∞(x) = Ric(x) + Ṡ(x).(1.1)

That is first studed by otha [3]. The projective Ricci curvature is Weighed Ricci
curvature that is projecivly invariant when the volume form is fixed [4]. Another
weighted Ricci curvature is (a, b)-weighted Ricci curvature in Finsler geometry that
define by Z.Shen and R.Zhao [5]. In special case a Finsler metric F called called
Quasi− Einstein Finsler metric if F satisfies Ric∞ = (n− 1)cF 2 [7].

Theorem 1.1. Let F = α+β be the Randers metric on manifold M of dimension
n ≥ 3 with volume form dV be a volume form. F is a quasi-Einstein Finsler met-
rics if and only if F satisfy following
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e00 =σ(x)(α2 − β2),(1.2)

R̃ic00 =(α2 + 3β2)(n+ 1)c(x)− 2βsi0|i − 2si0si0 + 4si0ri0 − 2f0s0 + α2sijs
j
i(1.3)

+ 2s0|0 − f0|0 + (n+ 1)s20 + 2βfxisi0 + σ2(α2 + β2)
(n+ 7)

4
,

si0|i =β(n+ 1)c(x)− 2sis
i
0 + fxisi0 −

1

2
σ|0(1.4)

+
1

2
f0σ − (n+ 7)

2
σs0 + σ(σβ + s0) +

(n+ 7)

4
σ2β.

2. Preliminaries

Let (M,F ) be a Finsler metric. The non-negative function F on TM is a Finsler
metric of M (or Finsler structure) if satisfying three conditions:
(i) Regularity, (ii) Positive 1-homogeneity and (iii) Strong convexity.
Define the most fundamental measure in Finsler geomatry named Busemann −
Hausdorff on M by

mBH(dx) := ΦBH(x)dx1dx2 . . . dxn,(2.1)

where the function ΦBH is defined as following

ωn

ΦBH(x)
= L

({
(ai)i=1 ∈ R

∣∣∣∣F( n∑
i=1

ai
∂

∂xi

∣∣∣∣
x

)
< 1

})
.(2.2)

In local cordinates, a volume form is dV = σ(x)dx1 . . . dxn, where σ is positive
function. the quantity S is measure by distortions rate of change along geodesics
where destortions τ(x, y) is defined as following

τ(x, y) := ln

√
detgij(x, y)

σ(x)
.

The S- curvature and Ṡ are defined by

S(x, y) :=
d

dt
[τ(c(t), ċ(t))]

∣∣∣∣
t=0

or S(x, y) := τ|i(x, y)y
i,

Ṡ(x, y) :=
d

dt
[S(c(t), ċ(t))]

∣∣∣∣
t=0

or Ṡ(x, y) := S|i(x, y)y
i,

Where c = c(x) be the geodesic with c(0) = x and ċ = y and ”—” denotes the
horizontal covariant derivative with respect to F . A vector field G, induced by a
Finsler metric F on TM0, is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂xi
,

which is called spray of F and Gi(x, y), are local functions on TM0, satisfying
Gi(x, λy) = λ2Gi(x, y), with λ > 0 is called spray coefficients of F . In general the
spray cofficients

The famous and importand family of Finsler mertic are (α, β) − metrics that
can be express by the form

F = αϕ(s), s =
β

α
.
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Put ϕ(s) = 1 + s, then F = α+ β which is called Randers metric.
The spray cofficients of (α, β)−metrics are given by

Gi = Gi
α +Qi,

where

Gi
α =

1

4
aij{αxkyjyjyk − αxj},

Qi = αQsi0 +Θ(r00 − 2αQs0)
yi

α
+Ψ(r00 − 2αQs0)b

i,(2.3)

where

Q =
ϕ′

ϕ− sϕ′
, Θ =

(ϕ− sϕ′)ϕ′ − sϕ′ϕ′′

2ϕ [ϕ− sϕ′ + (B − s2)ϕ′′]
, Ψ =

ϕ′′

2 [ϕ− sϕ′ + (B − s2)ϕ′′]
.

let (M,F ) be a n-dimensional Finsler manifold and the geodesic coefficients of F
denote by Gi. Define R = Rk

i (x, y)dx
i ⊗ ∂

∂xi |x by

Ri
k = 2

∂Gi

∂xk
− yj

∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

The family R := Rk
i is called the Riemann curvature (or flag curvature tensor).

The Ricci scalar is defined by Ric := Ri
i and a Finsler metric F on M is called an

Einstein metric if there is function λ defined on M such that Ric = λ(x)F 2.

3. Proof of Theorem

In this section we discuss the necessery and sufficient condition that Randers
metric be a Quasi-Eistain Finsler metric. Before prove of Theorem 1.1 we need the
following lemma;

Lemma 3.1. Randers metric F is Quasi-Einstein if and only if Rat and Irrat are
equal with zero.

Proof. Assume Randers metric is Qasi-Einstein metric, Ric+ Ṡ = (n− 1)cF , so we
have the following

0 = αRic+ Iii + Ṡ − (n− 1)cF

= αRic+
(n+ 7)

F 2

{
−1

4
r00 + αr00s0 − α2s20

}
+

1

F

{
2αf0s0 − 4αr0is

i
0 + r00|0 − 2αs0|0 + 4α2sis

i
0 − f0r00

}
+
{
2αsi0|i − 2s0is

i
0 − α2sijs

j
i − 2αfxisi0 + f0|0 − (n− 1)cF 2

}
(3.1)
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By multiplaying (3.1) by F 2 removes y from the denominators. So Rat and Irrat
are the following form,

Rat =(α+ β)
{
αRic− 2si0s

i
0 − α2sijs

j
i + f0|0

}
+ α2

{
4βsis

i
0 − 4r0is

i
0 + 2f0s0 + 4βsi0|i − (n+ 7)s20

}
+ β

{
r00|0 − f0r00

}
− (n+ 7)

2
r00

− (α4 + 6α2β2 + β4)(n− 1)c(x),

(3.2)

Irrat =2βαRic+ 2(α2 + β2)si0|i − 4(n− 1)c(x)β(α2 + β2)

+ 4βsi0si0 − 2βs0|0 − 4βr0is
i
0 − 2(α2 + β2) + r00|0

− 2βf0|0 − f0r00 + 2βf0s0 + (n+ 7)r00s0 + 4α2sis
i
0

− 2(β2 + α2)fxisi0 − 2βα2sijd
j
i .

(3.3)

The condition for a Randers metric to be Quasi-Einstein metric is to satisfy the
following eqation,

Rat+ αIrrat = 0,(3.4)

the rest proof that Rat and Irrat must be zero is similar to [1] so we omit it. �

Proof of Theorem 1.1 Now these two Equation we discuss another necessery
condition Let F is Quasi-Einstein metric. So,

0 = Rat− βIrrat(3.5)

= (α2 − β2){αRic− (α2 + 3β)(n− 1)c(x) + 2f0s0 + 2βsi0|i + 2si0si0

−4si0ri0 − α2sijs
j
i − 2s0|0 + f0|0 − (n+ 7)s20 − 2βfxisi0} −

(n+ 7)

4
(r00 + 2βs)2.

Thus we have

r00 + 2βs0 = σ(x)(α2 − β2),(3.6)

where σ(x) is a scalar function on M .
Return and put (19) to Rat − βIrrat = 0, by divide off factor (α2 − β2) imply
following result .

αRic00 =(α2 + 3β)(n− 1)c(x)− 2f0s0 − 2βsi0|i − 2si0si0

+ 4si0ri0 + α2sijs
j
i + 2s0|0 − f0|0 + (n+ 7)s20 + 2βfxisi0

+
(n+ 7)

4
(α2 − β2)σ2(x).(3.7)

Back to Irrat = 0. Replace ”αRic00”, ”r00”, ”r00|0” and ”si0ri0”. Thus we have

si0|i =β(n+ 1)c(x)− 2sis
i
0 + fxisi0 −

1

2
σ|0

+
1

2
f0σ − (n+ 7)

2
σs0 + σ(σβ + s0) +

(n+ 7)

4
σ2β.(3.8)



58 ILLATRA KHAMONEZHAD, BAHMAN REZAEI, AND MEHRAN GABRANI

References

[1] D. Bao, C. Robles, On Randers spaces of constant flag curvature, Rep. on Math. Phys. 51

(2003) 9-42.
[2] X. Cheng and Z. Shen, Randers metrics with special curvature properties, Osaka Journal of

Mathematics, 40(2003), 87-101.
[3] S. Otha, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations,36(2009),

211-249.
[4] Z. Shen, L. Sun, On the projective Ricci curvature, Sci. China Math, 64(2021), 1629-1636.
[5] Z. Shen, R. Zhao, On a class of weakly weighted Einstein metrics, preprint, 2022.
[6] Z. Shen, Volume comparison and its application in Riemann-Finsler geometry, Adv. Math.,

128(1997), 306-328.
[7] H. Zhu, On class of Quasi-Einstein Finsler Metrics, 195(2022).

Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran.
E-mail address: I.khamonezhad@urmia.ac.ir

Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran.
E-mail address: b.rezaei@urmia.ac.ir

Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran.
E-mail address: m.gabrani@urmia.ac.ir



The 12th Seminar on Geometry and Topology

University of Tabriz, 1-2 Mordad 1402, July. 23-24, 2023

HOMOTOPICALLY COVERING HOMOTOPY PROPERTY

ALI PAKDAMAN AND SABA DEHROOYE

Abstract. In this paper we generalize covering homotopy property by homo-

topically covering homotopy property and study its effect on other concepts
such as fibrations and unique path lifting.

Key words and phrases: Covering Homotopy Property; Homotopically

Covering Homotopy Property; Fibration.

1. Introduction

A map p : E → B has the covering homotopy property if for every space X,

every map f̃ : X → E and every homotopy F : X × I → B with p ◦ f̃ = F ◦ J0,

there exists a homtopy F̃ : X × I → E such that p ◦ F̃ = F and F̃ ◦ J0 = f̃ , where
J0 : X → X × I is J0(x) = (x, 0).

Here, we want to generalize covering homotopy property to homotopically cov-
ering homotopy property: in the definition of the covering homotopy prop-

erty, p ◦ F̃ = F is replace by p ◦ F̃ ≃ F , rel X × İ.
A weak homotopical version of the covering homotopy property, that is, the weak

covering homotopy property introduced by K. Fuchs [2]. A map p : E → B has
the weak covering homotopy property if in the definition of the covering homotopy

property, F̃ ◦ J0 = f̃ is replace by the fiber homotopy F̃ ◦ J0 ≃p f̃ . A. Dold, et.al
[1, 2, 4], studied the maps which have the weak covering homotopy property, called
h-fibrations (or Dold fibrations). They proved that the weak covering homotopy
property is invariant under the fiber homotopy equivalence, the fibers of an h-
fibration have the same homotopy type, for every h-fibration there exists the long
exact sequence, and etc (see [1, 2, 4]).

By using homotopically covering homotopy property, we introduce H-fibrations
as another homotopical generalization of fibrations.

1.1. Preliminaries. Throughout this article, all spaces are path connected, unless
otherwise stated. A map f : X −→ Y means a continuous function and I := [0, 1].
The map α : I −→ X is called a path from x0 = α(0) to x1 = α(1) and it’s inverse
α−1 defined by α−1(t) = α(1− t). For two paths α, β : I −→ X with α(1) = β(0),
α∗β denotes the usual concatenation of the two paths. Also, all homotopies between
paths is assumed to be relative to end points.

For given maps p : E → B and f : X → B, a map f̃ : X → E is called a lifting

of f if p ◦ f̃ = f , and p has unique lifting property (ul), if every two lifts f̃ , f of f
with the same image on some points of X, are equal. When F : X × I −→ Y is
a map, we say that F is a homotopy from F0 to F1 and write F : F0 ≃ F1, where
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Fi : X −→ Y is Fi(x) = F (x, i), for i = 0, 1. The constant map from X to Y which
sends all points to y ∈ Y is denoted by Cy.

2. Main results

In the definition of the covering homotopy property, diagrams commut in the
TOP category(category of topological spaces and continuous maps). When we
enter the HTOP category(category of topological spaces and homotopy class of
maps), the commutativity of the diagrams means that the maps are homotopic.

Definition 2.1. A map p : E → B is said has homotopically covering homotopy

property, abbreviated by hchp, if for every space X, every map f̃ : X → E and every

homotopy F : X×I → B with p◦ f̃ = F ◦J0, there exists a homotopy F̃ : X×I → E

such that p ◦ F̃ ≃ F , rel X × İ and F̃ ◦ J0 = f̃ .

Clearly every map with covering homotopy property has hchp, but the following
example show that the converse is not necessarily true.

Example 2.2.
(i) Let E = I × I −{(0, 1

2 )}, B = I and p be the projection on the first component.

Moreover, let F : X × I → B, f̃ : X → E are maps with p ◦ f̃ = F ◦ J0. Let

A = (1, 1
2 ), and define a homotopy F̃ : X × I → E by

F̃ (x, t) =

{
f̃(x) + 2(A− f̃(x))t t ∈ [0, 1

2 ]

F (x, t) + 2(A− (F (x, t), 0))(1− t) t ∈ [ 12 , 1].

Define H : X × I × I → B by H(x, t, s) = (1 − s)p ◦ F̃ (x, t) + sF (x, t). Then

H : p ◦ F̃ ≃ F rel X × İ because H(x, t, 0) = p ◦ F̃ (x, t), H(x, t, 1) = F (x, t) and

for i = 0, 1, H(x, i, s) = (1 − s)p ◦ F̃ (x, i) + sF (x, i) = p ◦ F̃ (x, i) = F (x, i). Also

note that, F̃ ◦ J0 = f̃ .
(ii) Let E = {(t, 0)|t ∈ I} ∪ {(t, t)|t ∈ I − {1}}, B = I and p : E → B be the

projection on the first component. Let f̃ : X → E and F : X× I → B be maps with

p ◦ f̃ = F ◦ J0. Define,

F̃ (x, t) =

{(
(1− 2t)pr1f̃(x), (1− 2t)pr2f̃(x)

)
t ∈ [0, 1

2 ](
(2t− 1)F (x, t), 0

)
t ∈ [ 12 , 1] .

Therefore, by the gluing lemma F̃ is continuous. Define H : X × I × I → B by

H(x, t, s) = (1 − s)p ◦ F̃ (x, t) + sF (x, t). Then for every x ∈ X and every t, s ∈ I
have

H(x, t, 0) = p ◦ F̃ (x, t),

H(x, t, 1) = F (x, t),

H(x, 0, s) = (1− s)p ◦ F̃ (x, 0) + sF (x, 0) = p ◦ F̃ (x, 0) = F (x, 0),

H(x, 1, s) = (1− s)p ◦ F̃ (x, 1) + sF (x, 1) = p ◦ F̃ (x, 1) = F (x, 1).

Moreover, F̃ ◦ J0 = f̃ .

A map p : E → B has path lifting property if for a given b ∈ B, e ∈ p−1(b)
and a path α in B beginning at b, there exists a path α̃ in E such that α̃(0) = e

and p ◦ α̃ = α, ([5]). Also by replacing p ◦ α̃ = α by p ◦ α̃ ≃ α, rel İ, it is said
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that p has homotopically path lifting property and α̃ is a homotopically lifting of
α, [6]. We know that fibrations and h-fibrations have path lifting property and
homotopically path lifting property (see [6, 5]). Here, we prove that maps with
hchp have homotopically path lifting property.

Proposition 2.3. If p : E → B ihas hchp, then p has homotopically path lifting
property.

Proof. If α is a path in B and e ∈ p−1(α(0)), we show that α has a homotopically
lifting at e. Let F : {∗} × I → B be the homotopy defined by F (∗, t) = α(t) and

f̃ : {∗} → E be the map f̃(∗) = e. Then p◦ f̃ = F ◦J0 and since p is an H-fibration,

there exist two homotopies F̃ : {∗} × I → E and H : {∗} × I × I → B such that

H : p◦F̃ ≃ F rel {∗}×İ and F̃ ◦J0 = f̃ . Let α̃(t) = F̃ (∗, t) and define H : I×I → B

by H(s, t) = H(∗, s, t). Therefore we have α̃(0) = F̃ (∗, 0) = F̃ ◦ J0(∗) = f̃(∗) = e

and H : p ◦ α̃ ≃ α rel İ, because for every s, t ∈ I have

H(s, 0) = H(∗, s, 0) = p ◦ F̃ (∗, s) = p ◦ α̃(s),
H(s, 1) = H(∗, s, 1) = F (∗, s) = α(s),

H(0, t) = H(∗, 0, t) = p ◦ F̃ (∗, 0) = p ◦ α̃(0) = F (∗, 0) = α(0),

H(1, t) = H(∗, 1, t) = p ◦ F̃ (∗, 1) = p ◦ α̃(1) = F (∗, 1) = α(1).

�
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INVARIANT INFINITE SERIES METRICS ON REDUCED Σ-

SPACES

SIMIN ZOLFEGHARZADEH AND MEGERDICH TOOMANIAN

Abstract. In this paper we study the geometric properties of Finsler Σ−spaces.

We prove that Infinite series Σ−spaces , are Riemannian.
Key words and phrases: Finsler metric; (α, β)− metric; infinite series met-

ric.

1. Introduction

Let M be a C∞ manifold and µ : M×M −→ M , µ(x, y) = x.y be a differentiable
multiplication. The space M with the multiplication µ is said to be symmetric if
the following conditions hold.

(1) x.x = x
(2) x.(x.y) = y
(3) x.(y.z) = (x.y)(x.z)
(4) Every point x has a neighborhood U such that x.y = y implies

y = x, for all y ∈ U .

The notion of symmetric spaces is due to E. Cartan and reformulated by O. Loos as
pair (M,µ) with conditions (1)−(4) in [14]. A. J. Ledger [12, 11] initiated the study
later, generalized symmetric spaces or regular s−spaces. Let M be a C∞−manifold
with a family of maps {sx}x∈M . The space M is said to be a regular s−space if
the following conditions hold.

(a) sxx = x,
(b) sx is a diffeomorphism,
(c) sx ◦ sy = ssxy ◦ sx,
(d) (sx)∗ has only one fixed vector, the zero vector.

Σ−spaces and reduced Σ−spaces where first introduced by O. Loos [14] as general-
isation of reflection spaces and symmetric spaces [13]. They include also the class
of regular s−manifolds [7].

The definition of symmetric Finsler space is a natural generalization of E. Car-
tan’s definition of Riemannian symmetric spaces. We call a Finsler space (M,F ) as
a symmetric Finsler space if for any point p ∈ M there exists an involutive isometry
sp of (M,F ) such that p is an isolated fixed point of sp.
If we drop the involution property in the definition of symmetric Finsler space
keeping the property sx ◦ sy = sz ◦ sx, z = sx(y) we get a bigger class of Finsler
manifolds as symmetric Finsler spaces [4, 6, 8, 17]. Finsler Σ−spaces were first
proposed and studied by the second authors in [9].
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2. Preliminaries

A Finsler metric on a C∞ manifold of dimension n, is a function
F : TM −→ [0,∞) which has the following properties.

(i) F is C∞ on TM0 = TM {0},
(ii) F is positively 1-homogeneous on the fibers of tangent bundle

TM ,
(iii) For any non-zero y ∈ TxM , the fundamental tensor

gy : TxM × TxM −→ R on TxM is positive definite,

gy(u, v) =
1

2

∂2

∂s∂t
[F 2(y + su+ tv)]|s=t=0, u, v ∈ TxM.

Then (M,F ) is called n−dimensional Finsler manifold.
One of the main quantities in Finsler geometry is the flag curvature which is

defined as follows:

K(P, y) =
gy(R(u, y)y, u)

gy(y, y)gy(u, u)− g2y(y, u)
,

where P = span{u, y} is a 2−plane in TxM , R(u, y)y = ∇u∇yy−∇y∇uy−∇[u,y]y
and ∇ is the Chern connection induced by F [16, 3]. For a Finsler metric F on
n−dimensional manifold M , the Busemann-Hausdorff volume form
dVF = σF (x)dx

1 . . . dxn is defined by

σF (x) =
V ol(Bn(1))

V ol
{
(yi) ∈ Rn|F (yi

∂

∂xi
|x) < 1

} .
Let Gi := 1

4g
il[ ∂

2(F 2)
∂xk∂yl y

k − ∂(F 2)
∂xl ], denote the geodesic coefficients of F in the same

local coordinate system. The S−curvature can be defined by

S(y) =
∂Gi

∂yi
(x, y)− yi

∂

∂xi
[lnσF (x)],

where y = yi ∂
∂xi |x ∈ TxM (see [3]). The Finsler metric F is said to be of isotropic

S−curvature if

S = (n+ 1)cF,

where c = c(x) is a scalar function on M .
Let (M,F ) be an n−dimensional Finsler manifold. The non-Riemannian quantity
Ξ−curvature Ξ = Ξidx

i on the tangent bundle TM is defined by

Ξi = S.i|mym − S|i,

where S denotes the S−curvature, “.” and “—” denote the vertical and horizontal
covariant derivatives, respectively. We say that a Finsler metric have almost van-
ishing Ξ−curvature if Ξi = −(n + 1)F 2( θ

F )yi where θ = θi(x)y
i is a 1-form on M

[16, 5].

3. (α, β)− Σ- spaces

We first recall the definition and some basic results concerning Σ−spaces [10].

Definition 3.1. Let M be a smooth connected manifold, Σ a Lie group, and
µ : M ×Σ×M −→ M a smooth map. Then the triple (M,Σ, µ) is a Σ−space if it
satisfies
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(Σ1): µ(x, σ, x) = x,
(Σ2): µ(x, e, y) = y,
(Σ3): µ(x, σ, µ(x, τ, y)) = µ(x, στ, y)
(Σ5): µ(x, σ, µ(y, τ, z)) = µ(µ(x, σ, y), στσ−1, µ(x, σ, z))

where x, y, z ∈ M , σ, τ ∈ Σ and e is the identity element of Σ. The triple (M,Σ, µ)
is usually dinoted by M.

For a fixed point x ∈ M we define a map σx : M −→ M by σx(y) = µ(x, σ, y)
and a map σx : M −→ M by σx(y) = σy(x). with respect to these maps the above
conditions became

(Σ
′

1): σx(x) = x,

(Σ
′

2): ex = idM ,

(Σ
′

3): σxτx = (στ)x
(Σ

′

4): σxτyσ
−1
x = (στσ−1)σx(y).

For each x ∈ M by Σx we denote the image of Σ under the map Σ −→ Σx, σ −→ σx.
For each σ ∈ Σ we define (1,1)-tensor field Sσ on the Σ−space M by

SσXx = (σx)∗Xx ∀x ∈ M,Xx ∈ TxM.

Clearly Sσ is smooth.

Definition 3.2. A Σ−space M is a reduced Σ−space if for each x ∈ M ,

(1) TxM is generated by the set of all σx(Xx), that is

TxM = gen
{
(I − Sσ)Xx|Xx ∈ TxM,σ ∈ Σ

}
,

(2) If Xx ∈ TxM and σxXx = 0 for all σ ∈ Σ then Xx = 0, and thus no
non-zero vector in TxM is fixed by all Sσ.

Definition 3.3. A Finsler Σ−space, denoted by (M,Σ, F ) is a reduced Σ−space
together with a Finsler metric F which is invariant under Σp for p ∈ M .

Definition 3.4. let α =
√
ãij(x)yiyj be a norm induced by a Riemannian metric

ã and β(x, y) = bi(x)y
i be a 1-form on an n-dimensional manifold M , and let

(3.1) ∥β(x)∥α :=
√
ãijbi(x)bj(x).

Now , the function F is defined by ,

(3.2) F := αϕ(s), s =
β

α
,

where ϕ = ϕ(s) is a positive c∞ function on (−b0, b0) satisfying

ϕ(s)− sϕ′(s) + (b2 − s2)ϕ′′(s) > 0, | s |≤ b < b0.(3.3)

Then by lemma 1.1.2 of [3],F is a Finsler metric if ∥β(x)∥α < b0 for any x ∈ M .
A Finsler metric in the form (3.2) is called an (α, β)− metric [1, 3]. A Finsler
space having the Finsler function ,

(3.4) F (x, y) =
β2(x, y)

β(x, y)− α(x, y)
,

is called a Finsler space with an infinite series(α, β) - metric.
now we present the main results
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Lemma 3.5. Let (M,Σ, F ) be an infinite series Σ− space with F =
β2

β − α
defined

by the Riemannian metric ã and the vector field X. Then (M,Σ, ã) is a Riemannian
Σ−space.

Proof: Let σx be a diffeomorphism σx : M −→ M defined by σx(y) = µ(x, σ, y).
Then for p ∈ M and for any y ∈ TpM , we have F (p, Y ) = F (σx(p), dσx(Y )).
Applying equation (3.4) we get

ã(Xp, y)
2

ã(Xp, y)−
√
ã(y, y)

=
ã(Xσx(p), dσx(y))

2

ã(Xσx(p), dσx(y))−
√
ã(dσx(y), dσx(y))

,

which implies

ã(Xp, y)
2ã(Xσx(p), dσx(y))− ã(Xp, y)

2
√
ã(dσx(y), dσx(y))

(3.5) = ã(Xσx(p), dσx(y))
2ã(Xp, y)− ã(Xσx(p), dσx(y))

2
√

ã(y, y).

Applying the above equation to −Y , we get

ã(Xp, y)
2ã(Xσx(p), dσx(y)) + ã(Xp, y)

2
√
ã(dσx(y), dσx(y))

(3.6) = ã(Xσx(p), dσx(y))
2ã(Xp, y) + ã(Xσx(p), dσx(y))

2
√

ã(y, y),

Applying equations (3.5)and (3.6), we get

(3.7) ã(Xp, y) = ã(Xσx(p), dσx(y)),

subtracting equation (3.5)from equation (3.6) and using equation (3.7), we get

ã(y, y) = ã(dσx(y), dσx(y)).

Thus σx is an isometry with respect to the Riemannian metric ã .�
Lemma 3.6. Let (M,Σ, ã) be a Riemannian Σ−space. Let F be an infinite series
defined by the Riemannian metric ã and the vector field X. Then (M,Σ, F ) is an
infinite series Σ−space if and only if X is σx−invariant for all x ∈ M .

Proof: Let X be σx−invariant. Then for any p ∈ M , we have Xσx(p) = dσxXp.
Then for any y ∈ TpM we have

F (σx(p), dσxyp) =
ã(Xσx(p), dσxyp)

2

ã(Xσx(p), dσxyp)−
√
ã(dσxyp, dσxyp)

=
ã(dσxXp, dσxyp)

2

ã(dσxXp, dσxyp)−
√
ã(dσxyp, dσxyp)

=
ã(Xp, yp)

2

ã(Xp, yp)−
√
ã(yp, yp)

= F (p, yp).

conversely ,let F be a ΣM − invariant , then for any p ∈ M and y ∈ TpM , we
have F (p, Y ) = F (σx(p), dσx(Y )).
Applying the lemma 3.5, we have ã(Xp, y) = ã(Xσx(p), dσx(y)), which implies

ã(y, y) = ã(dσx(y), dσx(y))(3.8)

Combining the equation (3.7) and (3.8) , we get

ã(Xx, y) = ã(Xσx(p), dσx(y))(3.9)

Therefore dσxXp = Xσx(p). �



66 SIMIN ZOLFEGHARZADEH AND MEGERDICH TOOMANIAN

Theorem 3.7. An infinite series Σ−space must be Riemannian

Proof: Let (M,Σ, F ) be an infinet series Σ−space with F =
β2

β − α
defined by the

Riemannian metric ã and the vector field X. Let σx be a diffeomorphism defined
by σx(y) = µ(x, σ, y). by lemma 3.5, (M,Σ, ã) is a Riemannian Σ−space. Thus we
have

F (x, dσxy) =
ã(Xx, dσx(y))

2

ã(Xx, dσx(y))−
√

ã(dσx(y), dσx(y))

=
ã(Xx, dσx(y))

2

ã(Xx, dσx(y))−
√

ã(y, y)
= F (x, y).

Therefore ã(Xx, dσxy) = ã(Xx, y), ∀y ∈ TxM . The tangent map Sσ = (dσx)x is
an orthogonal transformation of TxM without any nonzero fixed vectors. So we
have ã(Xx, (S

σ − id)x(y)) = 0 , ∀y ∈ TxM . Since (S − id)x is an invertible linear
transformation, we have Xx = 0, ∀x ∈ M . Hence F is Riemannian. �
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G.R.C. OF EXPONENTIAL (α, β)-METRICS WITH ALMOST

VANISHING Ξ-CURVATURE

MOSAYEB ZOHREHVAND

Abstract. In this paper, we study a class of Finsler metrics that is defined
by a Riemannian metric α and a 1-form β on a manifold M . They are called
(α, β)-metrics and have many applications in Physics, Biology, Control Theory

and etc. We consider (α, β)-metric F = α(es + ϵs), s := β
α

where ϵ ̸= is a

constant. It is called generalized Randers change (G.R.C.) exponential (α, β)-

metric F̃ = αes. We prove that if F has almost vanishing Ξ-curvature then

Ξ = 0.
Key words and phrases: Ξ-curvature; exponential (α, β)-metric; Randers

change.

1. Introduction

In Finsler geometry, there are several geometric quantities: Riemannian quan-
tities including the Riemannian curvature, the flag curvature and non-Riemannian
quantities including the distortion, the (mean) Cartan curvature, the S-curvature,
the (mean) Berwald curvature and the mean Landsberg curvature, etc. They are
vanishing for Riemannian metrics, hence they are said to be non-Riemannian [6].

S-curvature S is an importan non-Riemannian quantity in Finsler geometry
which has impact to the flag curvature of a Finsler metric[3]. Using S-curvature,
we can define the non-Riemannian quantity Ξ-curvature Ξ = Ξidx

i as follow:

Ξi := S.i|mym − S|i,

where . and | denote the vertical and horizontal covariant derivative with respect
to the Berwald connection of F , respectively. F is said to has almost vanishing
Ξ-curvature, if there exists a 1-form θ = θidx

i on the manifold M such that

(1.1) Ξi = −(n+ 1)F 2
( θ

F

)
yi
.

A rich and important class of Finsler metrics is (α, β)-metrics, which was first
introduced by M. Matsumoto [5]. The simplest class of (α, β)-metrics are Randers
metrics that have important applications in physics and mathematics [1]. It was
first introduced and studied by G. Randers and is of the form F = α+ β where α
is a Riemannian metric and β is a 1-form [7].

Due to this issue, for a Finsler metric F , one can consider the change

F → F̃ := F + ϵβ,

2010 Mathematics Subject Classification. 53B40, 53C60.
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where ϵ is a nonzero constant. This transformation is called generalized Randers
change (G.R.C.) of F , because F̃ is reduced to a Randers metric when F = α is a
Riemannian metric and ϵ = 1.

The (α, β)-metric F = α exp(s), s := β/α, is called exponential metric and
studied by many authors [8, 9, 11, 12]. This metric is interesting, because the
exponential metric

F = α exp(

∫ s

0

q
√
b2 − t2

1 + qt
√
b2 − t2

dt),

is a almost regular unicorn metric, where b := ∥β∥α and q is a constant. A unicorn
metric is a Landsberg metric that is not Berwaldian [10]. This paper is devoted to
study of the generalized Randers change of exponential (α, β)-metric F = α exp(s),
s := β/α that has almost vanishing Ξ-curvature.

2. Preliminaries

For a Finsler space (M,F ), The fundamental tensor (gy) = (gij(x, y)) of F is a
quadratic form on TxM that is defined

gij(x, y) :=
1

2
[F 2]yiyj (x, y).

The Finsler metric F induces a gelobal vector field G on the slight tangent bundle
TM0 := TM − {0} that is given by

G := yi
∂

∂xi
− 2Gi ∂

∂yi
,

on the standard induced coordinate (xi, yi). The coefficients Gi := Gi(x, y) are
local functions on TM0 that are defined by

Gi :=
1

4
gil

{
[F 2]xmylym − [F 2]xl

}
.

The Busemann-Hausdorff volume form dVF = σF (x)dx
i ∧ . . . ∧ dxn associated to

Finsler metric F is defined by

σF (x) := V ol
( Bn(1)

V ol
{
(yi) ∈ Rn

∣∣∣F (
yi ∂

∂xi

)
< 1

})
.

The S-curvature S can be defined as follow:

S :=
∂Gi

∂xi
− yi

∂ lnσF

∂xi
.

From S-curvature, we define the non-Riemannian quantity Ξ-curvature Ξ = Ξidx
i

on TM as follow:

(2.1) Ξi := S.i|mym − S|i,

where . and | denote the vertical and horizontal covariant derivative with respect
to the Berwald connection of F , respectively.

A Finsler metric F is an (α, β) -metric if F = αϕ(s), s := β/α, where

α =
√
aij(x)yiyj is a Riemannian metric, β = bi(x)y

i is a 1-form with ||βx|| < b0,
x ∈ M and ϕ(s) is a positive C∞ function on (−b0, b0) satisfying

(2.2) ϕ(s)− sϕ
′
(s) + (b2 − s2)ϕ

′′
(s) > 0, |s| ≤ b < b0.

In this case, the metric F = αϕ(s) is a positive definite Finsler metric [4].
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Let

rij :=
1

2
(bi;j + bj;i), sij :=

1

2
(bi;j − bj;i),

where bi;j denote the coefficients of the covariant derivative of β with respect to α.
It is easy to see that the 1-form β is closed if and only if sij = 0 and it is parallel
with respect to α if and only if rij = sij = 0. Furthermore, we denote

rij :=aikrkj , r00 := rijy
iyj ,

ri0 :=rijy
j , r := rijb

ibj ,

sij :=aikskj , si0 := sijy
j ,

si :=bjs
j
i, s0 := siy

i,

where bi := aijbj .
The geodesic coefficients Gi of an (α, β)-metric F = αϕ(s) are given by [2]

(2.3) Gi = Gi
α + αQsi0 + {−2Qαs0 + r00}

{
Ψbi +Θα−1yi

}
,

where Gi
α is the geodesic coefficients of α and

Q =
ϕ

′

ϕ− sϕ′ ,

Θ =
ϕϕ

′ − s(ϕϕ
′′
+ ϕ

′
ϕ

′
)

2ϕ((ϕ− sϕ′) + (b2 − s2)ϕ′′)
,

Ψ =
ϕ

′′

2((ϕ− sϕ′) + (b2 − s2)ϕ′′)
.

3. Main results

In this section, we consider (α, β)-metric F = α(es + ϵs), s := β
α with almost

vanishing Ξ-curvature.
Tayebi and Amini in [9] obtained the formula of Ξ-curvature for an (α, β)-metric

F = αϕ(s) as follow.

(3.1) Ξi = H.i;mym −H;i − 2H.i.mHm,

where

H := (n+ 1)α−1AΘ+Q′s0 + α−1AΨ′(b2 − s2) + 2Ψ[r0 − sQs0 −Q′(b2 − s2)s0],

”; ” denotes the horizontal covariant derivative with respect to α and

A := r00 − 2αQs0.

Theorem 3.1. Let F = α(es + ϵs), s := β/α be an (α, β)-metric on an n-
dimensional manifold M with (n ≥ 3), where ϵ ̸= 0 is a constant. Let F has
almost vanishing Ξ-curvature, then Ξ = 0.

Proof. Let F = αϕ(s) has almost vanishing Ξ-curvature, thus there exists an 1-form
θ := θi(x)y

i on M , such that

(3.2) Ξi = −(n+ 1)F 2
( θ

F

)
yi

= −(n+ 1)[αϕθi −
ϕ

α
θyi −

ϕ′

α
θ(αbi − syi)].
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Putting ϕ(s) = es + ϵs and (3.2) in (3.1) and using maple program, we obtain

Ai0 +Ai1e
s +Ai2e

2s +Ai3e
3s +Ai4e

4s = λ[Bi0 +Bi1e
s +Bi2e

2s

+Bi3e
3s +Bi4e

4s +Bi5e
5s +Bi6e

6s],(3.3)

where Ai4, . . . , Ai0 and Bi6, . . . , Bi0 are polynomials of s and b and

λ = 2(n+ 1)α4(1− s+ b2 − s2)5(s− 1)4.

From (3.3), we obtain

(3.4) Bi5 = Bi6 = 0.

Since Bi5 = ϵ[sαθi − s
αθyi −

θ
α (αbi − syi)] and Bi6 = αθi − θ

αyi −
θ
α (αbi − syi), thus

(3.5)
1

α2
[α3θi − αθyi − θ(α2bi − βyi)] = 0

Contracting (3.5) with bi, we get

(3.6) α3θib
i − αβθ − θ(α2b2 − β2) = 0.

From (3.6), we have

α3θib
i − αβθ = θ(α2b2 − β2).(3.7)

We see that the left hand side of (3.7) is irrational and the right hand side is
rational. On the other hand b2α2 − β2 ̸= 0, thus from (3.7), we conclude θ = 0, i.e.
Ξ = 0. �
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GEODESIC VECTORS OF EXPONENTIAL METRIC ON FOUR

DIMENSIONAL LIE GROUPS
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Abstract. In this paper, we consider invariant exponential metrics and de-
scribe all geodesic vectors and investigate the set of all homogeneous geodesics

on left invariant hypercomplex 4-dimensional simply connected Lie groups.
Key words and phrases: Complex structure; Exponential metric; Geodesic

vector; Homogeneous geodesic.

1. Introduction

A Finsler manifold is a manifold M where each tangent space is equipped with a
Minkowski norm, that is, a norm that is not necessarily induced by an inner prod-
uct (here, a Minkowski norm has no relation to indefinite inner products). This
norm also induces a canonical inner product. Finsler geometry is named after Paul
Finsler who studied it in his doctoral thesis in 1917.

The important family of Finsler metrics is the (α, β)- metrics. The notion of
(α, β)- metrics are introduced by Matsumoto [6]. If F = α + β, then we get
the Randers metric. This metric is an (α, β)- metric that introduced by Ingar-

den. An (α, β)- metric is a Finsler metric of the form F = αφ(s), s = β
α where

α =
√

ãij(x)yiyj is induced by a Riemannian metric ã = ãijdx
i ⊗ dxj on a con-

nected smooth n- dimensional manifold M and β = bi(x)y
i is a 1- form on M . We

note that, the important kinds of (α, β)- metrics are Kropina metric F = α2/β,
square metric F = (α+β)2/α, exponential metric F = α exp(β/α) and Matsumoto
metric F = α2/(α− β).

The important concepts in Finsler geometry is geodesics. Geodesics in a man-
ifold is the generalization of concept of a straight line in an Euclidean space. A
geodesic in a homogeneous Finsler space (G/H,F ) is called homogeneous geodesic
if it is an orbit of a one-parameter subgroup of G. Homogeneous geodesics on ho-
mogeneous Riemannian manifolds have been studied by many authors. Latifi has
extended the concept of homogeneous geodesics in homogeneous Finsler spaces [5].

suppose (M,F ) be a connected homogeneous Finsler space, G is a connected
transitive group of isometries of M and H is the isotropy subgroup at a point
o ∈ M . Therefore, M is naturally identified with the coset space G/H with G-
invariant Finsler metric F . Also, in this case the Lie algebra g of G has a reductive
decomposition

g = m+ h,
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where m ⊂ g is a subspace of g isomorphic to the ToM and h is the Lie algebra
of H. In this paper we study homogeneous geodesics of left invariant Exponential
metrics on left invariant hypercomplex 4-dimensional simply connected Lie groups.

2. Preliminaries

Definition 2.1. Let M be a smooth n- dimensional C∞ manifold and TM be
its tangent bundle. A Finsler metric on a manifold M is a non-negative function
F : TM → R with the following properties [1].

(1) F is smooth on the slit tangent bundle TM0 := TM\{0}.
(2) F (x, λy) = λF (x, y) for any x ∈ M , y ∈ TxM and λ > 0.
(3) The following bilinear symmetric form gy : TxM × TxM → R is positive

definite

gy(u, v) =
1

2

∂2

∂s∂t
F 2(x, y + su+ tv)|s=t=0.

Let α =
√
ãij (x) yiyj be a norm induced by a Riemannian metric ã and

β (x, y) = bi(x)y
i be a 1-form on an n- dimensional manifold M . Let

b := ∥β(x)∥α :=
√
ã(x)bi(x)bj(x).

Now, let the function F is defined as follows

(2.1) F := αφ(s), s =
β

α
,

where φ = φ(s) is a positive C∞ function on (−b0, b0) satisfying

φ (s)− sφ′ (s) +
(
b2 − s2

)
φ′′ (s) > 0, |s| ≤ b < b0.

Then F is a Finsler metric if ∥β(x)∥α < b0 for any x ∈ M . A Finsler metric in the
form (2.1) is called an (α, β)- metric [8].

A Finsler space having the Finsler function:

F (x, y) = α(x, y) exp(
β(x, y)

α(x, y)
),

is called a exponential space. We note that the Riemannian metric ã induces an
inner product on any cotangent space T ∗

xM such that ⟨dxi(x), dxj(x)⟩ = ãij(x).
The induced inner product on T ∗

xM induces a linear isomorphism between T ∗
xM

and TxM . Then the 1-form β corresponds to a vector field X̃ on M such that

ã(y, X̃(x)) = β(x, y).(2.2)

Also we have ∥β(x)∥α = ∥X̃(x)∥α . Therefore we can write exponential metric as
follows:

F (x, y) =
√
ã(y, y) exp(

ã(X, y)√
ã(y, y)

).(2.3)

Now consider the Chern connection on π∗TM whose coefficients are denoted
by Γi

jk. Let γ(t) be a smooth regular curve in M with velocity field V . Suppose

W (t) := W i(t) ∂
∂xi be a vector field along γ. Then the covariant derivative DV W

with reference vector V have the form[dW i

dt
+W jV k(Γi

jk)(γ,V )

] ∂

∂xi
|γ(t).
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A curve γ(t) with the velocity V = γ̇(t), is a Finslerian geodesic if

DV

[ V

F (V )

]
= 0, with reference vector V.

Definition 2.2. Suppose (G/H,F ) be a homogeneous Finsler manifold with a fixed
origin o. Let g and h be the Lie algebra of G and H respectively and g = m + h a
reductive decomposition. Therefore, a homogeneous geodesic through the o ∈ G/H
is a geodesic γ(t) of the form

(2.4) γ(t) = exp(tZ)(o), t ∈ R,
where Z is a nonzero vector of g.

In Riemannian setting the authors in [4], proved that a X ∈ g−{0} is a geodesic
vector if and only if

(2.5) ⟨[X,Y ]m, Xm⟩ = 0, ∀Y ∈ m.

After this, the second author in Finsler setting shown that

Lemma 2.3 ([5]). Suppose (G/H,F ) be a homogeneous Finsler space with a re-
ductive decomposition

g = h+m.

Therefore, Y ∈ g− {0} is a geodesic vector if and only if

(2.6) gYm
(Ym, [Y,Z]m) = 0, ∀Z ∈ m,

where the subscript m indicates the projection of a vector from g to m.

3. Geodesic Vectors of Exponential metric On Four Dimensional Lie
Group

An almost complex structure on a real differentiable manifold M is a tensor field
J which is, at every point x of M , an endomorphism of the tangent space TxM
such that J2 = −1, where 1 denotes the identity transformation of TxM . Note that
for any two vector fields X and Y , we define the Nijenhuis tensor N as

(3.1) N(X,Y ) = [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ].

A hypercomplex manifold is a manifoldM with three globally-defined, integrable
complex structures I, J,K satisfying the quaternion identities

(3.2) I2 = J2 = K2 = −1, and IJ = K = −JI.

Obata [7] proved that a hypercomplex manifold admits a unique torsion-free
connection ∇ such that

∇I = ∇J = ∇K = 0.

Now let M be a 4-dimensional manifold. A hypercomplex structure on M is a
family H = {Jα}α=1,2,3 of fiberwise endomorphism of TM such that

(3.3) − J2J1 = J1J2 = J3, J2
α = −IdTM , α = 1, 2, 3,

(3.4) Nα = 0, α = 1, 2, 3,

where Nα is the Nijenhuis tensor (torsion) corresponding to Jα.

We note that, an almost complex structure is a complex structure if and only if it
has no torsion [3]. Then the complex structures Jα, α = 1, 2, 3, on a 4-dimensional
manifold M form a hypercomplex if they satisfy in the relation (3.3).
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Definition 3.1. A Riemannian metric ã on a hypercomplex manifold (M,H) is
called hyper-Hermitian if for all vector fields X and Y on M and for all α = 1, 2, 3
we have

ã(JαX,JαY ) = ã(X,Y ).

Definition 3.2. A hypercomplex structure H = {Jα}α=1,2,3 on a Lie group G is
said to be left invariant if for any t ∈ G we have

Jα = T lt ◦ Jα ◦ T lt−1,

where T lt is the differential function of the left translation lt.

In this section, we consider left invariant hyper-Hermitian Riemannian metrics on
left invariant hypercomplex 4-dimensional simply connected Lie groups. Barberis
shown that in this spaces, g is either Abelian or isomorphic to one of the following
Lie algebras.

[e2, e3] =e4, [e3, e4] = e2, [e4, e2] = e3, e1 : central,(3.5)

[e1, e3] =e1, [e2, e3] = e2, [e1, e4] = e2, [e2, e4] = −e1,(3.6)

[e1, e2] =e2, [e1, e3] = e3, [e1, e4] = e4,(3.7)

[e1, e2] =e2, [e1, e3] =
1

2
e2, [e1, e4] =

1

2
e4, [e3, e4] =

1

2
e2,(3.8)

where {e1, e2, e3, e4} is an orthonormal basis.

Now we want to describe all geodesics vectors of left invariant exponential metrics
F defined by relation

F (x, y) =
√
ã(y, y) exp(

ã(X, y)√
ã(y, y)

).

By using the formula

gy(u, v) =
1

2

∂2

∂s∂t
F 2(x, y + su+ tv)|s=t=0,

and some computations we get

gy(u, v) = exp(
2ã(X, y)√
ã(y, y)

)
(
ã(u, v) + 2ã(X,u)ã(X, v)− ã(X, y)ã(y, u)ã(y, v)

ã(y, y)3/2

)
+ exp(

2ã(X, y)√
ã(y, y)

)
1√

ã(y, y)

(
ã(X,u)ã(y, v) + ã(X, v)ã(y, u)− ã(X, y)ã(u, v)

)
+ exp(

2ã(X, y)

ã(y, y)
)
2ã(X, y)

ã(y, y)

( ã(X, y)ã(y, u)ã(y, v)

ã(y, y)
− ã(y, u)ã(X, v)− ã(X, v)ã(y, v)

)
.

Therefore, for all z ∈ g we have

(3.9) gy(y, [y, z]) = ã
(
X +

(√ã(y, y)− ã(X, y)

ã(y, y)

)
y, [y, z]

)√
ã(y, y) exp(

2ã(X, y)√
ã(y, y)

).

Now, by using lemma 2.3 and equation (3.9) a vector y =
∑4

i=1 yiei of g is a
geodesic vector if and only if for each j = 1, 2, 3, 4,

(3.10) ã
( 4∑

i=1

xiei +
(√∑4

i=1 y
2
i −

∑4
i=1 xiyi∑4

i=1 y
2
i

) 4∑
i=1

yiei, [
4∑

i=1

yiei, ej ]
)
= 0.
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So, we get the following cases:

3.1. Case (1). 
j = 2 → x3y4 − x4y3 = 0,

j = 3 → x4y2 − x2y4 = 0,

j = 4 → x2y3 − x3y2 = 0.

As a special case, if X = x1e1, then a vector y of G is a geodesic vector if and
only if y ∈ Span{e1}.

Corollary 3.3. Let (M,F ) be a Finsler space with exponential metric F defined by

an invariant metric ã and an invariant vector eld X =
∑4

i=1 xiei on left invariant
hypercomplex 4-dimensional simply connected Lie group and let (3.5) holds. Then
geodesic vectors depending on x2, x3 and x4.

Theorem 3.4. Let (M,F ) be a Finsler space with exponential metric F defined
by an invariant metric ã and an invariant vector eld X = x1e1 on left invariant
hypercomplex 4-dimensional simply connected Lie group and let (3.5) holds. Then
y ∈ g is a geodesic vector of (M,F ) if and only if y is a geodesic vector of (M, ã).

Proof. Let y ∈
∑4

i=1 yiei ∈ g. Let y is a geodesic vector of (M, ã). By using (2.5)
we have ã(y, [y, ei]) = 0 for each i = 1, 2, 3, 4. Therefore by using (3.10), y is a
geodesic of (M,F ).

Conversely, let y =
∑5

i=1 yiei ∈ g is a geodesic vector of (M,F ), because
ã(X, [y, ei]) = 0 for each i = 1, 2, 3, 4, by using (3.10) we have ã(y, [y, ei]) = 0. �

3.2. Case (2).

j = 1 → x1y3 +

√∑
y2
i−

∑
xiyi∑

y2
i

y1y3 + x2y4 +

√∑
y2
i−

∑
xiyi∑

y2
i

y2y4 = 0,

j = 2 → x1y4 +

√∑
y2
i−

∑
xiyi∑

y2
i

y1y4 − (x2y3 +

√∑
y2
i−

∑
xiyi∑

y2
i

y2y3) = 0,

j = 3 → x1y1 +

√∑
y2
i−

∑
xiyi∑

y2
i

y21 + x2y2 +

√∑
y2
i−

∑
xiyi∑

y2
i

y22 = 0,

j = 4 → x2y1 − x1y2 = 0.

As a special case, if X = x3e3 + x4e4, then a vector y of G is a geodesic vector
if and only if y ∈ Span{e3, e4}.

Corollary 3.5. Let (M,F ) be a Finsler space with exponential metric F defined by

an invariant metric ã and an invariant vector eld X =
∑4

i=1 xiei on left invariant
hypercomplex 4-dimensional simply connected Lie group and let (3.6) holds. Then
geodesic vectors depending on x1 and x2.

Theorem 3.6. Let (M,F ) be a Finsler space with exponential metric F defined by
an invariant metric ã and an invariant vector eld X = x3e3+x4e4 on left invariant
hypercomplex 4-dimensional simply connected Lie group and let (3.6) holds. Then
y ∈ g is a geodesic vector of (M,F ) if and only if y is a geodesic vector of (M, ã).

Proof. The proof is the same as before. �
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3.3. Case (3).

j = 1 → x2y2 + x3y3 + x4y4 +

√∑
y2
i−

∑
xiyi∑

y2
i

(y22 + y23 + y24) = 0,

j = 2 → x2y1 +

√∑
y2
i−

∑
xiyi∑

y2
i

y2y1 = 0,

j = 3 → x3y1 +

√∑
y2
i−

∑
xiyi∑

y2
i

y3y1 = 0,

j = 4 → x4y1 +

√∑
y2
i−

∑
xiyi∑

y2
i

y4y1 = 0.

As a special case, if X = x1e1, then a vector y of G is a geodesic vector if and
only if y ∈ Span{e1}.

Corollary 3.7. Let (M,F ) be a Finsler space with exponential metric F defined by

an invariant metric ã and an invariant vector eld X =
∑4

i=1 xiei on left invariant
hypercomplex 4-dimensional simply connected Lie group and let (3.7) holds. Then
geodesic vectors depending on x2, x3 and x4.

Theorem 3.8. Let (M,F ) be a Finsler space with exponential metric F defined
by an invariant metric ã and an invariant vector eld X = x1e1 on left invariant
hypercomplex 4-dimensional simply connected Lie group and let (3.7) holds. Then
y ∈ g is a geodesic vector of (M,F ) if and only if y is a geodesic vector of (M, ã).

Proof. The proof is the same as before. �
3.4. Case (4).

j = 1 → 2x2y2 + x3y3 + x4y4 +

√∑
y2
i−

∑
xiyi∑

y2
i

(2y22 + y23 + y24) = 0,

j = 2 → x2y1 +

√∑
y2
i−

∑
xiyi∑

y2
i

y2y1 = 0,

j = 3 → x3y1 − x2y4 +

√∑
y2
i−

∑
xiyi∑

y2
i

(y3y1 − y2y4) = 0,

j = 4 → x2y3 + x4y1 +

√∑
y2
i−

∑
xiyi∑

y2
i

(y4y1 + y2y3) = 0.

As a special case, if X = x1e1, then a vector y of G is a geodesic vector if and
only if y ∈ Span{e1}.

Corollary 3.9. Let (M,F ) be a Finsler space with exponential metric F defined by

an invariant metric ã and an invariant vector eld X =
∑4

i=1 xiei on left invariant
hypercomplex 4-dimensional simply connected Lie group and let (3.8) holds. Then
geodesic vectors depending on x2, x3 and x4.

Theorem 3.10. Let (M,F ) be a Finsler space with exponential metric F defined
by an invariant metric ã and an invariant vector eld X = x1e1 on left invariant
hypercomplex 4-dimensional simply connected Lie group and let (3.8) holds. Then
y ∈ g is a geodesic vector of (M,F ) if and only if y is a geodesic vector of (M, ã).

Proof. The proof is the same as before. �
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QUARTER SYMMETRIC METRIC CONNECTIONS ON

COSYMPLECTIC STATISTICAL MANIFOLDS

SOHRAB AZIMPOUR AND SHIVA SALAHVARZI

Abstract. In this paper we define a quarter symmetric metric connection on
cosymplectic statistical manifolds and study the geometry of these manifolds

and their submanifolds. Also, we prove the induced connection on a sub-
manifold with respect to a quarter symmetric metric connection is a querter
symmetric metric connection and the second fundamental form coincides with
the second fundamental form of the Levi-Civita connection.

Key words and phrases: statistical manifold; quarter symmetric; cosym-
plectic manifold.

1. Introduction

Definition 1.1. Let (M̄, g) be a Riemannian manifold with Levi-Civita connection

∇̂. A pair (∇̄, g) is called a statistical structure on M̄ if ∇̄ is an affine and torsion
free connection and for all X,Y, Z ∈ T (M̄) we have [1]

(1.1) (∇̄Xg)(Y,Z) = (∇̄Y g)(X,Z).

Then (M̄, g, ∇̄) is said to be a statistical manifold.

An affine connection ∇̄∗ is called a dual connection of ∇̄ if

(1.2) Xg(Y,Z) = g(∇̄∗
XY, Z) + g(Y, ∇̄XZ).

∇̄∗ satisfies in equation (1.1) and (∇̄∗)∗ = ∇̄. From compability of ∇̂ with g and

(1.2) we obtain ∇̂ =
1

2
(∇̄+ ∇̄∗).

by defining K̄XY = ∇̄XY − ∇̂XY. [5] K̄ is a symmetric (1,2)-tensor field on M̄ ,
that is, K̄XY = K̄Y X and

(1.3) g(K̄XY, Z) = g(K̄XZ, Y ).

Let (M̄, g) be a (2n+ 1)-dimensional Riemannian manifold. If there exist a (1,1)-
tensor field φ, a structure vector field ξ and a 1-form η on M such that for all
X,Y ∈ T (M̄)

(1.4) φ2 = −I + η ⊗ ξ,

(1.5) φ(ξ) = 0, η(ξ) = 1,

(1.6) g(φX,φY ) = g(X,Y )− η(X)η(Y ), g(φX, Y ) = −g(X,φY ),

then (M̄, φ, ξ, η, g) is said to be an almost contact metric manifold. An almost con-

tact metric manifold (M̄, φ, ξ, η, g) is called a cosymplectic manifold if (∇̂Xφ)Y = 0.
Now, let M be a submanifold of statistical manifold M̄ , then the Gauss formulas
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for submanifold M of M̄ with respect to statistical connections ∇̄ and ∇̄∗ are given
by [2]

(1.7) ∇̄XY = ∇XY + h(X,Y ),

(1.8) ∇̄∗
XY = ∇∗

XY + h∗(X,Y ),

for all X,Y ∈ T (M), where ∇,∇∗ and h, h∗ are induced statistical connections
and second fundamental forms on M , respectively. Also M is called φ-invariant if
φX ∈ T (M), for all X ∈ T (M).

Theorem 1.2 ([4]). Let (M̄, g, φ, ∇̄, ∇̄∗) be an almost contact statistical manifold.
Then (M̄, g, φ, ∇̄, ∇̄∗) be a cosymplectic statistical manifold if and only if

(1.9) ∇̄XφY − φ∇̄∗
XY = K̄XφY + φK̄XY.

Definition 1.3. A linear connection ∇̃ on a cosymplectic statistical manifold
(M̄, g, φ, η, ξ, ∇̄, ∇̄∗) is said to be a quarter symmetric connection if its torsion

tensor T̃ satisfies

(1.10) T̃ (X,Y ) = ∇̃XY − ∇̃Y X − [X,Y ] = η(Y )φX − η(X)φY, ∀X,Y ∈ T (M̄)

Moreover, if the quarter symmetric connection ∇̃ satisfies ∇̃g = 0, then ∇̃ is
called a quarter symmetric metric connection.

Now, for all X,Y ∈ T (M̄) we set

(1.11) ∇̃XY = ∇̄XY − η(X)φY −KXY, ∇̃XY = ∇̄∗
XY − η(X)φY +KXY

It is easy to see that the torsion tensor T̃ with respect to linear connection ∇̃
satisfies in (1.10).

In [3] the outhors in generel define a semi-symmetric metric connection on statis-
tical manifolds and study the geometry of these manifolds and their submanifolds.
In this paper we define a quarter symmetric metric connection on cosymplectic sta-
tistical manifolds. We prove for a quarter symmetric metric connection on cosym-
plectic statistical manifolds the relation ∇̃φ = 0 holds.

2. Main results

Theorem 2.1. Let (M̄, ∇̄, g) be a cosymplectic statistical manifold admitting a

quarter symmetric linear connection ∇̃ defined in (1.11). Then ∇̃ is a metric con-
nection.

Proof. By using (1.1), (1.3), (1.6), (1.11) and Theorem 1.2 we obtain

(∇̃Xg)(Y,Z) = 0, ∀X,Y, Z ∈ T (M̄).

It gives the assertion. �

Now, we prove any quarter symmetric metric connection on a cosymplectic sta-
tistical manifold satisfies in (1.11).

Theorem 2.2. Let (M̄, ∇̄, g) be a cosymplectic statistical manifold admitting a

quarter symmetric linear connection ∇̃. Then ∇̃ satisfies in (1.11).
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Proof. Let ∇̃ be a metric connection satisfying (1.11) on cosymplectic statistical
manifold M̄ defined by

(2.1) ∇̃XY = ∇̄XY +H(X,Y ),

where H is a (1, 2)-tensor field on M̄ . From (1.1) and (2.1) we obtain

0 = (∇̃Xg)(Y,Z) = Xg(Y, Z)− g(∇̃XY, Z)− g(Y, ∇̃XZ) = Xg(Y,Z)

− g(∇̄XY +H(X,Y ), Z)− g(Y, ∇̄XZ +H(X,Z))

= −2g(KXZ, Y )− g(H(X,Y ), Z)− g(H(X,Z), Y ).

So
g(H(X,Y ), Z) + g(H(X,Z), Y ) = −2g(KXZ, Y ).

Now, from (2.1) we have

T̃ (X,Y ) = H(X,Y )−H(Y,X).

By using (1.10) we obtain

g(T̃ (X,Y ), Z) + g(T̃ (Z,X), Y ) + g(T̃ (Z, Y ), X) = g(H(X,Y )−H(Y,X), Z)

+ g(H(Z,X), Y )−H(X,Z), Y ) + g(H(Z, Y )−H(Y, Z), X)

= 2(g(H(X,Y ), Z) + g(K̄XZ, Y )).

Substituting (1.10) in the last equation implies

g(H(X,Y ), Z) =
1

2
{g(η(Y )φX − η(X)φY,Z) + g(η(X)φZ − η(Z)φX, Y )

+ g(η(Y )φZ − η(Z)φY,X)} − g(K̄XZ, Y ).

Thus we get
H(X,Y ) = −η(X)φY − K̄XY.

By taking the Equations (1.3) and (1.11) we get

∇̃XY = ∇̄∗
XY − η(X)φ(Y ) +KXY.

�
Theorem 2.3. Let (M̄, ∇̄, g) be a cosymplectic statistical manifold admitting a

quarter symmetric metric connection ∇̃. Then ∇̃φ = 0 .

Proof. For all X,Y ∈ T (M̄) by using Theorem 1.2 we have

(∇̃Xφ)Y = ∇̃XφY − φ∇̃XY = ∇̄XφY − η(X)φ2Y −KXφY

− φ∇̄∗
XY + η(X)φ2Y − φKXY = 0.(2.2)

�
Lemma 2.4. Let (M̄, ∇̄, g) be a cosymplectic statistical manifold admitting a quar-

ter symmetric linear connection ∇̃. Then the curvature tensor R̃ associated with ∇̃
satisfies the following conditions for all X,Y, Z,W ∈ T (M̄)

1) R̃(X,Y )Z = −R̃(Y,X)Z,

2) g(R̃(X,Y )Z,W ) = −g(R̃(Y,X)W,Z).

We consider ∇′ and h′ the induced connection and second fundamental form on
submanifold M with respect to the quarter symmetric metric connection ∇̃, respec-
tively. So the Gauss formula with respect to quarter symmetric metric connection
∇̃ is the form ∇̃XY = ∇′

XY + h′(X,Y ).
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Theorem 2.5. Let M be a φ-invariant submanifold of a cosymplectic statistical
manifold M̄ admitting a quarter symmetric metric connection ∇̃ and ξ ∈ T (M).
Then we have

∇′
XY =∇XY − η(X)φY −KXY, ∀X,Y ∈ T (M),

h′(X,Y ) =
1

2
(h(X,Y ) + h∗(X,Y )),

where KXY =
1

2
(∇−∇∗).

Proof. Applying (1.10) and Gauss formula in (1.7) we get

∇̃XY = ∇̄XY − η(X)φY − K̄XY = ∇XY + h(X,Y )− η(X)φY

− 1

2
(∇XY + h(X,Y )−∇∗

XY − h∗(X,Y ))

= ∇XY − η(X)φY −KXY +
1

2
(h(X,Y ) + h∗(X,Y )).(2.3)

By separating the tangential and normal parts we get the result. �
Remark 2.6. By similar proof of Theorem 2.5 we can show

∇′
XY = ∇∗

XY − η(X)φY +KXY, ∀X,Y ∈ T (M).

Corollary 2.7. Let M be a φ-invariant submanifold of cosymplectic statistical
manifold M̄ such that M̄ admits a quarter symmetric metric connection ∇̃ and
ξ ∈ T (M). Then the induced connection ∇′ of quarter symmetric metric connection

∇̃ is also quarter symmetric metric connection and (∇′
Xg)(Y, Z) = (∇̃Xg)(Y, Z).

Corollary 2.8. Let M be a φ-invariant submanifold of cosymplectic statistical
manifold M̄ such that M̄ admits a quarter symmetric metric connection ∇̃ and
ξ ∈ T (M). Then the second fundamental form with respect to quarter symmetric

metric connection ∇̃ coincides with the second fundamental form of Levi-Civita
connection.
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Abstract. In this paper, we calculate radical distribution Rad TQn and light-

like transversal vector bundle of ltr(TQn) and by means of these, we prove that
the geodesics of the lightlike cone Qn+1 are same as the geodesics of the Eu-
clidean cone.

1. Introduction

Lightlike submanifolds have been one of the recently subjects in differential ge-
ometry and modern physics. In general relativity, lightlike submanifolds usually
appear to be some smooth parts of the achronal boundaries. for example, event
horizon of Kruskal and Kerr black holes and the compact Cauchy horizons in Taub-
NUT spacetime.[3, 5, 9].

In a Riemannian or semi-Riemannian manifold the geodesics are fundamental
tools for appreciation of the properties of the manifold. To find geodesics in a man-
ifold plays a very important role in special and general relativity. The geodesics in
space-time are classified as spacelike, lightlike or timelike. The physical significance
of these types of geodesics that is the path of a light ray in space-time is described
by a lightlike geodesic.

2. Perliminaries

Let En be n-dimensional Euclidean space. For two vectors v = (v1, . . . , vn) and
w = (w1, . . . , wn) and an integer 0 ≤ q ≤ n the following bilinear form is defined.

⟨v, w⟩q :=

n−q∑
i=1

viwi −
n∑

i=n−q+1

viwi,(2.1)

that is a semi-Riemannian manifold. The resulting semi-Riemannian space is called
Minkowski n-space; if n = 4 it is the simplest example of a relativistic space-time[9].
A vector v ̸= 0 in En

q is called spacelike, timelike or lightlike if ⟨v, v⟩q > 0, ⟨v, v⟩q < 0
or ⟨v, v⟩q = 0 respectively, and v = 0 is spacelike. The set of all lightlike vectors in
En+1

q is called lightlike cone and denote by Qn.

Let (M̄, ḡ) be an n+1-dimensional semi-Riemannian manifold and (M, g) be
a hypersurface of M̄ with degenerate metric g induced of ḡ by an immersion
i : M → M̄ . Since g is degenerate on M , thus there is a vector field ξ ̸= 0 on M
such that

g(ξ,X) = 0, ∀X ∈ Γ(TM)
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For any x ∈ M , the radical space of TxM is a subspace of TxM , defined by

RadTxM := {ξ ∈ TxM : gx(ξ,X) = 0, ∀X ∈ TxM}(2.2)

and M is called a lightlike hypersurface of M̄ [9].
In a lightlike hypersurface, standard definition of second fundamental form and

Gauss-Weingarten formulas do not work; thus in 1991 Bejancu-Duggal in [2] intro-
duced a new technique as follow.

Let S(TM) be complementary of RadTM in TM , thus S(TM) is a non-degenerate
distribution of M which is called screen distribution on M , since M is paracompact
thus there always exists a screen distribution S(TM). For this reason we can de-
compose T (M̄) to orthogonal direct sum of two sub-bundle S(TM) and S(TM)⊥

(For more details, see [2, 5, 4]).

Theorem 2.1 ([5]). Let (M, g, S(TM)) be a lightlike hypersurface of a semi-
Riemannian manifold (M̄, ḡ).Then there exists a unique bundle ltr(TM) of rank
1 over M , such that for any non-zero section ξ of TM⊥ on a coordinate neighbor-
hood U ⊂ M , there exists a unique section N of ltr(TM) on U satisfying:

ḡ(N, ξ) = 1, ḡ(N,N) = ḡ(N,W ) = 0, ∀W ∈ Γ(S(TM)|U ).(2.3)

Now we can decompose T (M̄|M ) as follow.

TM̄|M = S(TM) ⊥ (RadTM ⊕ ltr(TM)) = TM ⊕ ltr(TM),(2.4)

that we call ltr(TM) the lightlike transversal vector bundle of M with respect to
S(TM).

By using the second form of decomposition in (2.4) we obtain Gauss and Wein-
garten formulas as follow

∇̄XY = ∇XY + h(X,Y ),(2.5)

∇̄XV = −AV X +∇t
XV,(2.6)

for all X,Y ∈ Γ(TM) and V ∈ Γ(ltr(TM)), where ∇XY and AV X belong to
Γ(TM) while h(X,Y ) and ∇t

XV belong to Γ(ltr(TM)) [5].
Since rank of Γ(ltr(TM)) is 1 thus if we set

B(X,Y ) := ḡ(∇̄XY, ξ),(2.7)

τ(X) = ḡ(∇t
XN, ξ),(2.8)

then by theorem 2.1 in the relations (2.5), (2.6) we conclude that

∇̄XY = ∇XY +B(X,Y )N,(2.9)

∇̄XV = −AV X + τ(X)N.(2.10)

One of the example in the lightlike hypersurface is n-dimensional lightlike cone of
Minkowski space En+1

q . Let (En+1
q , ⟨ , ⟩q) be (n+1)-dimensional Pseudo-Euclidean

space that its metric be defined in (2.1). (En+1
q , ⟨ , ⟩q) is called Minkowski space

of index q [9].
The upper lightlike hypersurface Qn

q of En+1
q be viewed by

i : En → En+1
q ,

i(x1, . . . , xn) := (x1, . . . , xn, b),(2.11)

where b =
√∑n−q+1

j=1 x2
j −

∑n
j=n−q+2 x

2
j . The case Qn

1 denoted by Qn.
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3. about the curves type of lightlike cone of index 1

In Euclidean space a regular curve is a curve that its velocity vector is nonzero.
In the Minkowski space E3

1 , any timelike ( lightlike ) curve is regular. Also if a
curve x : I → E3

1 is regular in s0 then by continuity, x is regular in a neighborhood
of s0[7]. Similarly to this, we can prove the following.

Proposition 3.1. Any timelike (lightlike) curve x : I → En+1
1 (with arbitrary

parameter) is regular.

Proof. Assume that the curve is timelike. We write

x(t) = (x1(t), . . . , xn(t), xn+1(t)),

where xi(t) are differentiable functions on I. In this case we have

(3.1) ⟨ẋ(t), ẋ(t)⟩ = ẋ2
1(t) + · · ·+ ẋ2

n(t)− ẋ2
n+1(t) < 0,

in particular ẋn+1(t) ̸= 0, that is, x is regular.
If the curve is lightlike, we have ẋn+1(t) ̸= 0 again since, on the contrary, ẋi(t) = 0
and ẋ(t) = 0. But this means that the curve is spacelike. �

Lemma 3.2. Let x : I → Qn ⊂ En+1
1 be a curve. Then x is lightlike if and only if

x is a straight line.

Proof. Let ⟨x, x⟩ = 0 and ⟨ẋ, ẋ⟩ = 0 that is

x2
n+1 = x2

1 + · · ·+ x2
n,(3.2)

ẋ2
n+1 = ẋ2

1 + · · ·+ ẋ2
n.(3.3)

By differentiation of (3.2) yields that

xn+1ẋn+1 = x1ẋ1 + · · ·+ xnẋn,

(xn+1)
2(ẋn+1)

2 = (x1ẋ1 + · · ·+ xnẋn)
2.

(3.4)

By replace of (3.2) and (3.3) in (3.4) and some calculations we conclude that:
n∑

i,j=1

(xiẋj − xj ẋi)
2 = 0,

xiẋj − xj ẋi = 0,

ẋi

xi
=

ẋ1

x1
, i = 1, . . . , n,

xi(s) = Aix1(s); i = 1, . . . , n, xn+1(s) = ±
√
1 +A2

1 + · · ·+A2
n x(s),

that Ai is some real constant. Thus x(s) =
−→
Ax1(s) that is a straight line with real

differential function x1(s) and constant lightlike velocity vector
−→
A. �

Lemma 3.3. Let x : I → En+1
1 be a timelike curve. Then x is not lying in the Qn.

Proof. If x be in the Qn, then

x2
n+1 = x2

1 + · · ·+ x2
n,

therefor
n∑

i=1

xix
′
i = xn+1x

′
x+1.(3.5)



GEODESICS ON THE LIGHTLIKE CONE 85

and since x is timelike thus:

(x2
1 + · · ·+ x2

n)(x
′2
1 + · · ·+ x′2

n)− x2
n+1x

′2
x+1 = −x2

n+1.(3.6)

If we replace (3.5) in (3.6) then
n∑

i,j=1

(xix
′
j − xjx

′
i)

2 = −x2
n+1,

thus xn+1 = 0 and by (3.5) yield that xi(s) = 0; i = 1, . . . , n. So x(s) = 0 that is
a contradiction. �

These two lemmas yield the following theorem.

Theorem 3.4. Let x : I → Qn ⊂ En+1
1 be a regular curve. then x is non-straight

line if and only if x is a spacelike curve.

Proof. Let x be a non-straight line curve in Qn, then by lemma 3.2 this curve is
not a lightlike curve and by lemma 3.3 this curve is not a timelike curve, thus it is
a spacelike curve.

Conversely; if the curve is a spacelike and straight line then x(s) =
−→
Ax̃(s) that

x̃(s) is a real differential function and
−→
A is a lightlike vector as x is lightlike, that

is a contradiction. �

4. Rad TQn
q and ltr(TQn

q )

Since induced metric on lightlike cone Qn of Minkowski space En+1
1 is degenerate

thus Rad TQn is nontrivial and attention to theorem 2.1 there exists an unique
transversal vector bundle of rank 1 over M . We calculate Rad (TQn) and ltr(TQn)
in the following theorem.

Theorem 4.1. Let Qn be n-dimensional lightlike cone of Minkowski space En+1
q

defined in (2.11). Then radical distribution of Rad TxQ
n spaned by ξ =

∑n
j=1 xj∂j+

b∂n+1, corresponding to ξ, unique section N of ltr(TQn) in theorem 2.1 is

N =
1

2b2
(

n∑
j=1

xj∂j − b∂n+1),(4.1)

and screen distribution S(TQn) is

S(TxQ
n) = Span{Wj : 1 ≤ j ≤ n− 1}(4.2)

where Wj = xj+1∂1 − x1∂j+1 for 1 ≤ j ≤ n − q and Wj = xj+1∂1 + x1∂j+1 for
n− q + 1 ≤ j ≤ n− 1.

Proof. Considering (2.11), the tangent space of Qn
q at i(x) spanned by following

vectors

∂i

∂xj
= ∂j +

∂b

∂xj
∂n+1 = ∂j +

xj

b
∂n+1, (1 ≤ j ≤ n− q + 1),

∂i

∂xj
= ∂j −

∂b

∂xj
∂n+1 = ∂j −

xj

b
∂n+1, (n− q + 2 ≤ j ≤ n),

Set Vj = b∂j + xj∂n+1 for 1 ≤ j ≤ n − q + 1 and Vj = b∂j − xj∂n+1 for
n− q + 2 ≤ j ≤ n, then

TxQ
n = span{Vj : 1 ≤ j ≤ n}.
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Let ξ =
∑n+1

j=1 ξj∂j be a vector of Rad TQn
q , then ξ satisfy in the equations

⟨ξ, Vj⟩q = 0, 1 ≤ j ≤ n,

⟨
n+1∑
k=1

ξk∂k, b∂j + xj∂n+1⟩q = 0, (1 ≤ j ≤ n− q),

⟨
n+1∑
k=1

ξk∂k, b∂j − xj∂n+1⟩q = 0, (n− q + 1 ≤ j < n− 1),

ξj =
ξn+1xj

b
, 1 ≤ j ≤ n.

If we choose ξn+1 = b then ξj = xj , 1 ≤ j ≤ n and Rad TxQ
n
q spanned by

ξ =
∑n

j=1 xj∂j + b∂n+1.
Set

Wj : =
1

b
(xj+1V1 − x1Vj+1) = xj+1∂1 − x1∂j+1, 1 ≤ j ≤ n− q,(4.3)

Wj : =
1

b
(xj+1V1 + x1Vj+1) = xj+1∂1 + x1∂j+1, n− q + 1 ≤ j < n− 1,(4.4)

and since {W1, . . . ,Wn−1} is linearly independent thus screen distribution of Qn
q is

S(TQn) = span {Wj : 1 ≤ j ≤ n− 1} .(4.5)

Let N =
∑n+1

i=1 ηi∂i ∈ ltr(TQn
q ), be unique section of ltr(TQn

q ) in theorem 2.1.
Thus

n−q+1∑
i=1

(ηi)2 −
n∑

i=n−q+2

(ηi)2 = 0,(4.6)

n−q+1∑
i=1

xiη
i −

n∑
i=n−q+2

xiη
i − bηn+1 = 1,(4.7)

η1xi+1 − ηi+1x1 = 0.(4.8)

From (4.6) we deduce that

ηn+1 = ε

√√√√ n∑
i=1

(ηi)2 −
n∑

i=n−q+2

(ηi)2, (ε = +1 or− 1).(4.9)

By relation (4.8) we have

ηj+1 =
xj+1

x1
η1,(4.10)

that if it replaces in (4.9) then

ηn+1 = εb
η1

x1
.(4.11)

Now if we replace (4.11) in (4.7) then

x1η
1 +

n−q∑
i=1

(xi+1)
2

x1
η1 −

n−1∑
i=n−q+1

(xi+1)
2

x1
η1 − εb2

η1

x1
= 1,

(b2 − εb2)η1 = x1,
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thus ε = −1, η1 =
x1

2b2
seduce that

ηn+1 = − 1

2b
, ηi =

xi

2b2
, 1 ≤ i ≤ n,(4.12)

N =
1

2b2
(

n∑
i=1

xi∂i − b∂n+1).(4.13)

�

5. Geodesics of Lightlike Cone
In this section, we will show that the geodesics of lightlike cone with respect to

the both Euclidean and Minkowski metrics are same, thus Minkowski metric ⟨ , ⟩q
is geodesically equivalent [8] to Euclidean metric ⟨ , ⟩.

Lemma 5.1. Let EQn be the cone with Euclidean metric, then lightlike transversal
vector in (4.1) is normal vector of hypersurface EQn.

Proof. In theorem 2.1 we prove that the tangent space of Qn
q be spanned by the

vectors Vj = b∂j + xj∂n+1 for 1 ≤ j ≤ n − q + 1 and Vj = b∂j − xj∂n+1 for
n− q + 2 ≤ j ≤ n, furthermore

⟨N,Vj⟩ = ⟨ 1

2b2
(

n∑
j=1

xj∂j − b∂n+1), xj∂0 + b∂j⟩ = 0,

that ⟨ , ⟩ is Euclidean inner product of En+1. �

The lemma 5.1 is valid for any lightlike hypersurface of Minkowski space En+1
q

(see [1], proposition 3.2), but we proved for special lightlike hypersurface Qn
q in

different way by direct calculations.

Theorem 5.2. Let Qn
q be lightlike cone of Minkowski space En+1

q . Then with

respect to the induced metric of En+1
q , the geodesics of lightlike cone Qn

q are same
to the geodesics of this cone with respect to the induced metric of Euclidean space
En+1.

Proof. Let α : I → Qn be a curve in n-dimensional lightlike cone. From (2.9), we
have

α′′ = ∇α′α′ +B(α′, α′)N.(5.1)

If α be a geodesics of Qn then α′′ = B(α′, α′)N , and since in the Euclidean hyper-
surfaces the acceleration of a geodesic is in normal space of hypersurface, thus by
using of lemma 5.1, we have α : I → Qn is also a geodesic of EQn.

�
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ON SYMMETRIES OF THE PSEUDO-RIEMANNIAN MANIFOLD

S2 × R

PARVANE ATASHPEYKAR AND ALI HAJI-BADALI

Abstract. In this article, we studied the symmetries of the pseudo-Riemannian

manifold S2 × R. Specially, we perused the existence of Ricci and matter
collineations in this space.

Key words and phrases: Pseudo-Riemannian metric; Killing and affine vec-

tor field; Ricci and matter collineation.

1. Introduction

The study of symmetries in general relativity has long been considered due to
they are interesting both from the mathematical and the physical point of view
(see for example [6]). The symmetry is a one-parameter group of diffeomorphisms
of the pseudo-Riemannian manifold (M, g), which leaves a special mathematical or
physical quantity invariant. This statement is equivalent to the Lie derivative of
the geometry quantity under the vector field X vanishes, i.e., LXS = 0. If S has
geometrical or physical significance, then those special vector fields under which
S is invariant will also be of significance. Isometries, homotheties, and conformal
motions are well-known examples of symmetries. Recently, other types of symme-
tries including curvature collineations (S = R being the curvature tensor), Ricci
collineations (S = ϱ being the Ricci tensor), and etc., have been studied. Some
examples may be found in [1, 2].

On the pseudo-Riemannian manifold (M, g) a matter collineation is a vector field

X, which preserves the energy-momentum tensor S = ϱ − τ

2
g, where τ shows the

scalar curvature. Since the Ricci tensor is constructed from the connection of the
metric tensor, Ricci collineations have geometrical importance. However, matter
collineations are more related to a physical viewpoint [3, 4]. These physical and
geometric concepts give a single meaning in a particular case, for example, when
the meter tensor has a zero scalar curvature.

In this article, we study symmetries of the pseudo-Riemannian manifold S2 ×
R. We present a complete classification of its Ricci and matter collineations.
Clearly, any Killing vector field (respectively, any affine vector field and curva-
ture collineation) is an affine vector field (respectively, any curvature and Ricci
collineation) but the inverse is always not true. Also, a homothetic vector field
(i.e., a vector field that holds in relation LXg = ηg, where η is a real number) is a
Ricci collineation. Thus, we examine the existence of proper Ricci and curvature
collineations, which are not Killing and homothetic. Maple16 c⃝ is used to check all
computations.

2010 Mathematics Subject Classification. 58D17, 53B30.
Speaker: Parvane Atashpeykar.
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2. The pseudo-Riemannian manifold S2 × R

We consider the local model for S2 × R given by R3 endowed with the pseudo-
Riemannian metric

g =
1

(1 + x2 + y2)2
(dx2 + dy2)− dz2.(2.1)

Then, the non-zero components of the Levi-Civita connection ∇ of the pseudo-
Riemannian manifold S2 × R are given by

∇∂x∂x = − 2x

(1 + x2 + y2)
∂x +

2y

(1 + x2 + y2)
∂y,

∇∂x∂y = − 2y

(1 + x2 + y2)
∂x − 2x

(1 + x2 + y2)
∂y,

∇∂y∂y =
2x

(1 + x2 + y2)
∂x − 2y

(1 + x2 + y2)
∂y,

and the non-zero component of the curvature tensor R is

R(∂x, ∂y)∂y =
4

(1 + x2 + y2)2
∂x.(2.2)

Also, the non-zero components of the Ricci tensor are ρ11 = ρ22 = 4
(1+x2+y2)2 .

3. Symmetries of S2 × R

The classification of Killing and affine vector fields on the pseudo-Riemannian
manifold (S2 × R, g) is as in the following theorem.

Theorem 3.1. Assume X = X1∂x+X
2∂y +X

3∂z be an arbitrary vector field and
ψ be a smooth function on the pseudo-Riemannian manifold (S2 × R, g). Then

(i) X is a Killing vector field if and only if

X1 =
1

2
c1(1 + x2 − y2)− (2c2x+ c3)y,

X2 = −c2(1− x2 + y2) + (c1y + c3)x,

X3 = c4.

(ii) X is an affine, non-Killing vector field if and only if

X1 = −c1(1 + x2 − y2) + (c2x+ c3)y,

X2 =
1

2
c2(1− x2 + y2)− (2c1y + c3)x,

X3 = c4z + c5.

In the above expressions, ci is an arbitrary real number, for any indices i.
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Proof. A straightforward computation displays that the Lie derivative of g is given
by

LXg =
8

(1 + x2 + y2)3
((1 + x2 + y2)∂xX

1 − 2xX1 − 2yX2)dxdx

+
8

(1 + x2 + y2)2
(∂xX

2 + ∂yX
1)dxdy

− 2

(1 + x2 + y2)2
((1 + 2x2 + 2y2 + 2x2y2 + x4 + y4)∂xX

3 − 4∂zX
1)dxdz

+
8

(1 + x2 + y2)3
((1 + x2 + y2)∂yX

2 − 2xX1 − 2yX2)dydy

− 2

(1 + x2 + y2)2
((1 + 2x2 + 2y2 + 2x2y2 + x4 + y4)∂yX

3 − 4∂zX
2)dydz

− 2∂zX
3dzdz.

To obtain Killing vector fields, we put all the coefficients of the LXg equal to zero
and solve the corresponding system of partial differential equations. The solutions
of this system give case (i).

Affine vector fields are determined by solving the system of PDEs, obtained from
the vanishing of the coefficients of the LX∇. This proves the case (ii).

�

Next, we will focus on symmetries of (S2×R, g) relative to curvature. The results
are reported in the following theorem.

Theorem 3.2. Assume X = X1∂x +X2∂y +X3∂z be an arbitrary vector field on
the pseudo-Riemannian manifold (S2 × R, g). Then

(i) X is a Ricci collineation if and only if X3 is arbitrary and

X1 =
1

2
c1(1 + x2 − y2)− (2c2x+ c3)y, X2 = −c1(1− x2 + y2) + (c1y + c3)x.

(ii) X is a curvature collineation if and only if

X1 =
1

2
c1(1 + x2 − y2) + (2c2x+ c3)y,

X2 = −c1(1− x2 + y2) + (c1y + c3)x,

X3 = f(z),

where f(z) is an arbitrary smooth function on S2 × R.

Proof. The Lie derivative of the Ricci tensor in the direction X is determined by

(LXϱ) =
8

(1 + x2 + y2)3
((1 + x2 + y2)∂xX

1 − 2xX1 − 2yX2)dxdx

+
8

(1 + x2 + y2)2
(∂xX

2 + ∂yX
1)dxdy +

8

(1 + x2 + y2)2
(∂zX

1)dxdz

+
8

(1 + x2 + y2)3
((1 + x2 + y2)∂yX

2 − 2xX1 − 2yX2)dydy

+
8

(1 + x2 + y2)2
(∂zX

2)dydz.
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Now, we need to put the coefficients of the LXϱ equivalent to zero and solve the cor-
responding system of partial differential equations to obtain the Ricci collineations.
The solutions to this system give case (i).

Next, we investigate curvature collineations, beginning from an arbitrary Ricci
collineation and apply the extra condition LXR = 0. Thus,

X =
1

2
c1(x

2 − y2)∂x + (c1x+ c2)y∂y +X3∂z,

is also a curvature collineation if and only if

1

(1 + x2 + y2)2
∂xX

3 =
1

(1 + x2 + y2)2
∂yX

3 = 0,

which gives the result case (ii). �
Now, we classify matter collineations on the pseudo-Riemannian manifold

(S2 × R, g).

Theorem 3.3. Assume X = X1∂x + X2∂y + X3∂z be an arbitrary smooth vec-
tor field on the pseudo-Riemannian manifold (S2 × R, g). Then, X is a matter
collineation if and only if X1, X2 are arbitrary and X3 = c, where c is a real
constant.

Proof. A straightforward computation displays that only the non-zero component
of the tensor field S is S(∂z, ∂z) = −1. Now, we compute the Lie derivative of the
tensor field S. We have

LXS = −2∂xX
3dxdy − 2∂yX

3dydz − 2∂zX
3dzdz.

Requiring that LXS = 0 we attain the system of partial differential equations,
which solutions specify the matter collineations of (S2×R, g). Thus, X is a matter
collineation if and only if X1, X2 are arbitrary and X3 is a real constant and this
completes the proof. �
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TAKAHASHI’S THEOREM ON HYPERSURFACES OF

MINKOWSKI SPACES

FIROOZ PASHAIE AND LEILA SHAHBAZ

Abstract. In this paper, we classify timelike hypersurfaces in Lorentz-Minkowski
space, x : Mn → Ln+1, satisfying the condition Lkx = Ax+b, where Lk is the

kth extension of Laplace operator (i.e. ∆), A is a constant matrix and b is a
constant vector. The condition Lkx = Ax+ b is a new version of a well-known
equation ∆x = dx for a real number d. As an extension of Takahashi’s theo-
rem we show that such a hypersurface has to be k-minimal or an open piece

of Sn1 (c), Sm1 (c)× Rn−m or Sm(c)× Ln−m for some c > 0 and 1 < m < n.
Key words and phrases: Timelike hypersurface; Higher order mean curva-

ture; Lorentz-Minkowski space.

1. Introduction

In 1966, Takahashi [5], determined the n-dimensional submanifolds isometri-
cally immersed into the Euclidean space Rn+m whose position vector field is an
eigenvector of the Laplace operator ∆ with the same eigenvalue. In particular,
by Takahashi Theorem, an immersed hypersurface ψ : Mn → Rn+1 satisfies the
condition ∆ψ = λψ for a real λ if and only if either λ = 0 and M is minimal in

Rn+1 or λ > 0 and M is an open subset of the hypersphere of radius

√
n

λ
centered

at the origin of Rn+1. Many people generalized this result in different directions.
In 1990, Garay [4], studied hypersurfaces ψ : Mn → Rn+1 satisfying the extended
condition ∆ψ = Dψ where D is a diagonal matrix, and he proved that such hyper-
surfaces are minimal hypersurface and open pieces of either round hyperspheres or
generalized right spherical cylinders. Dillen et al.[3] studied surfaces in R3 whose
position vector satisfies an extended condition ∆ψ = Aψ + b where A ∈ R3×3 is
a constant matrix, b ∈ R3 is a constant vector. He proved that such surfaces are
minimal surfaces and open pieces of spheres and circular cylinders in R3. Alias
et al.[2] considered hypersurfaces in space forms whose position vector field satisfy
the general condition Lkψ = Aψ + b, for a fixed integer 0 ≤ k ≤ n − 1, a matrix
A ∈ R(n+1)×(n+1) and a vector b ∈ Rn+1. He and N. Gürbüz [1] classified hyper-
surfaces in the Euclidean space Rn+1 whose position vector field satisfy the general
condition Lkψ = Aψ + b.

Based on this background, we consider the timelike hypersurfaces in the Lorentz-
Minkowski space whose position vector field satisfies Lkψ = Aψ+ b for a matrix A
and a vector b. It is well known that for a Lorentzian hypersurface M , its shape
operator S is not necessarily diagonalizable. In spite of this difficulty, we classify
such hypersurfaces.

2010 Mathematics Subject Classification. 53A10, 53B35, 53C15 .
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2. Preliminaries

Now we remember some notations and give the main definitions. The m-dimensional
pseudo-Euclidean space Rm

q of index q, stands for the vector space Rm with the

scalar product < x, y >:= −Σq
i=1xiyi + Σj>qxjyj , where x = (x1, . . . , xn) and

y = (y1, . . . , yn).
For r ̸= 0, the non-flat space form of curvature r is

Mn+1
q (r) =


Sn+1
q ( 1√

r
) = {y ∈ Rn+2

q | < y, y >=
1

r
}, (r > 0),

Hn+1
q ( −1√

−r
) = {y ∈ Rn+2

q+1 | < y, y >=
1

r
}, (r < 0).

For the hypersurface in the Euclidean space the shape operator S, associated to a
chosen (local) normal vector field n onM , is diagonalizable, but it is not necessarily
true For the timelike hypersurface in the Minkowski space-time. In the special
case that S is diagonalizable with the eigenvalue functions κ1, . . . , κn on M , using
sj :=

∑
1≤i1<···<ij≤n κi1 . . . κij , the jth mean curvature of M is defined by

(nj )Hj = (−ϵ)jsj , where ϵ := − < n,n >.

Definition 2.1. The Newton transformations Pj : χ(M) → χ(M), is defined by

P0 = I, Pj = (−ϵ)jsjI + ϵS ◦ Pj−1(j = 1, . . . , n), (I = Idχ(M)).

When S is diagonalizable, the Newton transformation Pj is self-adjoint and
diagonalizable on M , and commutes with S.

We generalize the notions ofHj and Pj to timelike hypersurfaces in the Minkowski
space.

Proposition 2.2. Let x : Mn → Ln+1 ( where n ≥ 2) be a connected timelike
hypersurface isometrically immersed into the Minkowski space and Pk be the kth
Newton transformation. If at a point p ∈ M , Hk(p) = 0 and Hk+1(p) ̸= 0, then
Pk−1 is definite at p.

Definition 2.3. The linearized operator of the (k + 1)th mean curvature of M ,
Lk : C∞(M) → C∞(M) is defined by the formula Lk(f) := tr(Pk ◦ ∇2f), where,

< ∇2f(X), Y >=< ∇Xgrad(f), Y >,

for every X,Y ∈ χ(M).

Throughout the paper, we study on every Lorentzian hypersurface of Ln+1,
defined by an isometric immersion x : Mn

1 → Ln+1. The symbols ∇̃ and ∇̄ stand
for the Levi-Civita connection on Mn

1 and Ln+1, respectively. For every tangent
vector fields X and Y on M , the Gauss formula is given by

∇̄XY = ∇̃XY+ < SX, Y > n,

for every X,Y ∈ χ(M). For each non-zero vector X ∈ Ln+1, the real value
< X,X > may be a negative, zero or positive number and then, the vector X is
said to be time-like, light-like or space-like, respectively.

Definition 2.4. For a n-dimensional Lorentzian vector space V n
1 , a basis B :=

{e1, . . . , en} is said to be orthonormal if it satisfies < ei, ej >= ϵiδ
j
i for i, j =

1, . . . , n, where ϵ1 = −1 and ϵi = 1 for i = 2, . . . , n. As usual, δji stands for the
Kronecker delta. B is called pseudo-orthonormal if it satisfies

< e1, e1 >=< e2, e2 >= 0, < e1, e2 >= −1,
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and < ei, ej >= δji , for i = 1, . . . , n and j = 3, . . . , n.

As well-known, the shape operator A of the Lorentzian hypersurface Mn
1 in

Ln+1, as a self-adjoint linear map on the tangent bundle of Mn
1 , locally can be

put into one of four possible canonical matrix forms, usually denoted by I, II,
III and IV . Where, in cases I and IV , with respect to an orthonormal basis of
the tangent space of Mn

1 , the matrix representation of the induced metric on Mn
1

is G1 = diagn[−1, 1, . . . , 1] and the shape operator of Mn
1 can be put into ma-

trix forms B1 = diag[λ1, . . . , λn] and B4 = diag[
[

κ λ
−λ κ

]
, η1, . . . , ηn−2], (where

λ ̸= 0), respectively. For cases II and III, using a pseudo-orthonormal basis of
the tangent space of Mn

1 , the induced metric on which has matrix form G2 =
diagn[[ 0 1

1 0 ], 1, . . . , 1] and the shape operator ofMn
1 can be put into matrix forms

B2 = diagn[[ κ 0
1 κ ], λ1, . . . , λn−2] and B3 = diagn[

[
κ 0 0
0 κ 1
−1 0 κ

]
, λ1, . . . , λn−3], re-

spectively. In case IV , the matrix B4 has two conjugate complex eigenvalues κ±iλ,
but in other cases the eigenvalues of the shape operator are real numbers.

Remark 2.5. In two cases II and III, one can substitute the pseudo-orthonormal
basis B := {e1, e2, . . . , en} by a new orthonormal basis B̃ := {ẽ1, ẽ2, e3, . . . , en}
where ẽ1 :=

1

2
(e1+e2) and ẽ2 :=

1

2
(e1−e2). Therefore, we obtain new matrices B̃2

and B̃3 (instead ofB2 andB3, respectively) as B̃2 = diagn[
[

κ + 1
2

1
2

− 1
2

κ − 1
2

]
, λ1, . . . , λn−2]

and B̃3 = diagn[

[
κ 0

√
2

2

0 κ −
√

2
2

−
√

2
2

−
√

2
2

κ

]
, λ1, . . . , λn−3]. After this changes, to unify

the notations we denote the orthonormal basis by B in all cases.

3. Main results

Theorem 3.1 ([1]). Let x : Mn → Rn+1 be an orientable hypersurface immersed
into the Euclidean space. Then, x satisfies Lkx = Ax+b, for an integer 0 ≤ k < n,
a matrix A ∈ R(n+1)×(n+1) and a vector b ∈ Rn+1, if and only if M is one of the
following hypersurfaces.
(i) a hypersurface with zero (k + 1)th mean curvature,
(ii) an open piece of Sn(r),
(iii) an open piece of Sm(c)× Rn−m, with k + 1 ≤ m ≤ n− 1.

Theorem 3.2. Let x : Mn
p → M̄n+1

1 be an isometric immersion satisfying the
condition ∆x = Ax+ b. Then its mean curvature is constant.

Theorem 3.2 gives an key idea for the the following one.

Theorem 3.3. The only non k-minimal Lorentzian hypersurfaces in the Lorentz-
Minkowski space-time, whose position vector field satisfies Lkx = Ax + b, are the
isoparametric hypersurfaces.

Similarly, we can prove the following theorem.

Theorem 3.4. If a non k-minimal Lorentzian hypersurfaces in the Lorentz-Minkowski
space-time satisfies the condition Lkx = Ax+ b, Then, its shape operator is diago-
nal.

Theorem 3.5. Let x : Mn
1 → Ln+1 be an orientable hypersurface immersed into

the Lorentz-Minkowski space-time. Then, x satisfies � x = Ax + b, for an integer
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0 ≤ k < n, a matrix A ∈ R(n+1)×(n+1) and a vector b ∈ Rn+1, if and only if M is
one of the following hypersurfaces.
(i) a hypersurface with zero scalar curvature,
(ii) Sn1 (c), c > 0;
(ii) Sm1 (c)× Rn−m, c > 0, and 1 < m < n;
(iii) Sm(c)× Rn−m

1 , c > 0, and 1 < m < n.
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ON STEIN MANIFOLDS AND BIHARMONIC REAL

HYPERSURFACES

FIROOZ PASHAIE AND LEILA SHAHBAZ

Abstract. In this paper, we consider real hypersurfaces of Stein manifolds.
A Stein manifold (M, J,g) is a complex manifold M with a complex structure
J , a Kähler metric g and a fundamental form µ = i∂∂̄ρ, where ρ : M → R is
a smooth strictly plurisubharmonic exhaustion. We study the biharmonicity

condition on the submanifolds of Stein manifolds emphasizing on real hyper-
surfaces.

Key words and phrases: Plurisubharmonic;symplectic form; Stein manifold.

1. Introduction

A submanifold Mk of a Riemannian manifold (Mn, g) (where 1 ≤ k ≤ n) de-
fined by an isometric immersion x : Mk → Mn is called harmonic if it satisfies
the condition τ(x) = 0, where the tension operator τ is the trace of ∇(dx) (i.e.
τ(x) := tr(∇dx)). Here, ∇ denotes the Levi-Civita connection on Mk. As a
routine extension, Mk is said to be biharmonic if it satisfies the Euler-Lagrange
condition τ2(x) = 0. The bitension operator τ2 is defined by

τ2(x) = ∆τ(x)− tr(R̄(dx, τ(x))dx),

where, ∆ and R̄ stand for the Laplace operator on Mk and the curvature tensor of
Mn, respectively, with the following rules.

∆V = tr(∇2V ),

R̄(X,Y ) =
[
∇̄X , ∇̄Y

]
− ∇̄[X,Y ],

for every tangent vector fields V on Mk and X and Y on Mn. The notation ∇̄
stands for the Levi-Civita connection on Mn. In the compact case, every harmonic
submanifold x :Mk → Mn plays the role of a critical point of the energy functional

e(x) =
1

2

∫
M

|dx|2 ,

[1] and similarly, a biharmonic map has the role of a critical point of the map e2
(namely, the functionl of bienergy) defined by

e2(x) =
1

2

∫
M

|τ(x)|2 .

The variational problem associated to e2 is related to the tensor of stress-energy.
In 1986, Jiang [3] has studied the formulae of the first and second variations of e2,
which are used to define the biharmonic maps.
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It is well-known that every noncompact complete Riemannian manifold with pos-
itive sectional curvature is diffeomorphic to an Euclidean space. We note that such
a manifold has a strictly convex exhaustion function. In complex case, every com-
plex manifold which admits a strictly plurisubharmonic smooth exhaustion function
is a Stein manifold. The class of Stein manifolds under the name of holomorphic
complete manifolds has been firstly introduced (in 1951) by Karl Stein. The aim
of this paper is to study the biharmonic real hypersurfaces of Stein manifolds.

2. Preliminaries

Here, some prerequisites are recalled from [2, 1, 4]. An almost complex manifold
is a smooth real manifold M of real dimension 2n with an tangent bundle auto-
morphism J : TM → TM satisfying J2 = −I. When J satisfies the well-known
Nijenhuis identity N ≡ 0, it is called integrable and then, (M, J) is called a complex
manifold. Remember that

N(X,Y ) := [JX, JY ]− [X,Y ]− J [X,JY ]− J [JX, Y ],

for all X,Y ∈ TM.
By definition, a Kähler manifold (M, J, g) is a complex manifold Mk with a

Hermitian metric F = σ − iν on tangent bundle such ν is a closed 2-form (i.e.
dν = 0). The pair (ν, J) is said to be compatible if ν(., J.) is a Riemannian metric.
So, on each almost complex submanifoldM of M there is a symplectic form induced
by ν which is compatible with J |M . Remember that, each complex submanifold
of a Kähler manifold is also a Kähler manifold. On any submanifold M of the
complex manifold M, there are some auxiliary operators as

ϕ̃ : TM → TM, ψ̃ : TM → NM, τ̃ : NM → TM, η̃ : NM → NM,

defined by X = φ̃X + ψ̃X and JZ = τ̃Z + η̃Z for every X ∈ TM and Z ∈ NM .
Since ν(JX, Y ) = −ν(X, JY ) for all X,Y ∈ TM , the mentioned operators satisfy
the following equalities

φ̃2X + τ̃ ψ̃X = −X, η̃2Z + ψ̃τ̃Z = −Z,

φ̃τ̃Z + τ̃ η̃Z = 0, ψ̃φ̃X + η̃ψ̃X = 0,(2.1)

g(ψ̃X,Z) = −g(X, τ̃Z).

Moreover, φ̃ and η̃ are skew-symmetric.
In the rest, we discuss on a particular class of complex manifolds, namely, Stein

manifolds. Let (Mn, J) is a complex manifold and K ⊂ Mn is compact. The
holomorphically convex hull of K is

hc(K) :=

{
z ∈ Mn | ∀ϕ ∈ O(Mn), |ϕ(z)| ≤ supw∈Kϕ(w)

}
.

Here, O(Mn) stands for the set of holomorphic functions on Mn. Now, (Mn, J) is
said to be holomorphically convex if there is no compact K ⊂ Mn with non-compact
hc(K).

Definition 2.1. A holomorphically convex complex manifold satisfying two fol-
lowing conditions is called a Stein manifold:

(1) Separation: For each distinct points z1, z2 ∈ M, there is a ϕ ∈ O(Mn) such
that ϕ(z1) ̸= ϕ(z2),
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(2) Local coordinates: For every point z ∈ Mn , there exist functions
ϕ1, . . . , ϕk ∈ O(M) whose differentials are C-linearly independent at z.

Every noncompact Riemann surface and the Cartesian product of two Stein man-
ifolds are Stein manifolds. In a Stein manifold M, the closed complex submanifolds
and the subsets of the form {z ∈ M |ϕ(z) ̸= 0} for some nonconstant ϕ ∈ O(M) are
Stein manifolds. Especially, the open subsets of C and the convex domains in Cn

are Stein manifolds. But, compact complex manifolds aren’t Stein.

Definition 2.2. A holomorphy domain is a nonempty open subset U ⊂ Cn such
that there is no nonempty open subsets V ⊂ U and W ⊂ Cn satisfying the following
conditions.

(1) W is connected and W ⊂ U dose not occurs,
(2) For every ϕ ∈ O(U), there is a function ψ ∈ O(W) such that ϕ|V = ψ|V.

In fact, a holomorphy domain is an open set such that there are some ϕ ∈ O(U)
without any holomorphic extension to a bigger set. Every holomorphy domain in
Cn is a Stein manifold. For every Stein manifold Mn, there exists a holomorphic
embedding as Ψ : M → C2n+1. In the following, we present some other statements
of the holomorphy domain.

First, we recall from the theory of complex functions that, a C2-function f on

an open set D ⊂ C is harmonic if ∆f = 4 ∂2f
∂z∂z̄ = 0 on D. In this context, there are

several related definitions as follow.

Definition 2.3. (1) A real-valued C2-function f on an open set D ⊂ C is said to
be subharmonic if for any domain U with U ⊂ D and any continuous real function
h on U, which is harmonic on U and satisfies h ≤ f on ∂U, we have h ≤ f on U.
(2) A C2-function f on an open set D ⊂ Cn is said to be plurisubharmonic if it
satisfies

n∑
j,k=1

∂2f(z)

∂zj∂z̄k
wjw̄k ≥ 0,

for every z ∈ D and w ∈ Cn. Moreover, if the mentioned hermitian form is positive
definite, f is called strictly plurisubharmonic. In the general case, a real function
f on D ⊂ Cn is plurisubharmonic if it is upper semicontinuous and for every
z, w ∈ Cn, the function h(s) := f(z + sw) is subharmonic.
(3) An open set D ⊂ Cn is called pseudoconvex if there exists a plurisubharmonic
function f ∈ C1(D) such that Dr := {z ∈ D : f(z) < r} is relatively compact in D
for every r ∈ R.

Recently, A. Tran has proved that if a complex manifold Mn admits a strictly
plurisubharmonic function f ∈ C∞(Mn) such that for every r ∈ R, Mr := {z ∈ M :
f(z) < r} is relatively compact in Mn, then it is a Stein manifold.

In a complex manifold M, every sequence {Kj}∞j=1 of compact subsets satisfying
∪jKj = M and Kj ⊂ int(Kj+1) (for all j) is called a compact exhaustion.

3. Main results

The following theorem formulates the biharmonicity of an arbitrary submanifold
of a Stein manifold.
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Theorem 3.1. Let Mm be a biharmonic submanifold of a Stein manifold (Mn, J)
and B, A, H be the second fundamental form, the shape operator and the mean
curvature vector field of M , respectively, and R̄ is the curvature tensor of (Mn, J).
Then, M satisfies the following equalities.

tr(∇AH) + tr(A∇⊥
· H(·)) = {

m∑
k=1

R̄(H, ek)ek}⊤,

∆⊥H+ trB(AH(·), ·) = {
m∑

k=1

R̄(H, ek)ek}⊥,(3.1)

with respect to a chosen geodesic frame field {ek}mk=1 on a neighborhood of any
point p ∈Mm,

It is a well known fact that any complex submanifold of a Stein manifold is
necessarily minimal. Hence, we considering only the biharmonic real submanifolds.

Let now x :Mm → Mn
c be the embedding of a real submanifold M of dimension

m in Mn
c . Then the bitension tensor becomes

(3.2) τ2(x) = −m{∆H− 1

4
cmH+

3

4
cJ(JH)⊤},

where H denotes the mean curvature vector field, ∆ is the rough Laplacian, and ⊤
stands for the tangent component to Mm.

The next two results are on real hypersurfaces of a Stein manifold.

Theorem 3.2. Let M be a proper biharmonic real hypersurface with constant
mean curvature in a Stein manifold (Mn

c , J). Then its second fundamental form B
satisfies the equality |B|2 = n+1

2 c.

Theorem 3.3. Let Mm be a biharmonic real submanifold of a Stein manifold
(Mn

c , J) and B, A and H be the second fundamental form, the shape operator and
the mean curvature vector field of M , respectively. If JH is assumed to be normal
to M , then, M satisfies the following equalities.

(i) −∆⊥H+ tr(B(·, AH·))− 1

4
cmH = 0,

(ii) m grad(|H|2) + 4tr(A∇⊥H(·)) = 0.
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ON WEAKLY BIHARMONIC HYPERSURFACES IN

LORENTZIAN 5-SPACE FORMS
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Abstract. One of interesting subjects in differential geometry is the bihar-
monic Lorentzian hypersurfaces of Lorentz 5-space form. A Lorentzian hyper-
surface ψ :M4

1 → M5
1(c) is said to be C-biharmonic if it satisfies the extended

biharmonicity condition C2ψ = 0. C is the well-known Cheng-Yau opera-
tor. We study weakly C-biharmonic Lorentzian hypersurfaces of M5

1(c) with
at most two distinct principal curvatures and constant mean curvature.

Key words and phrases: 1-minimal; Biharmonic; de Sitter space.

1. Introduction

A well-known conjecture of Bang-Yen Chen states that each biharmonic sub-
manifold of an Euclidean space is minimal. Chen himself has verified his conjecture
on biharmonic surfaces in Euclidean 3-space. Also, it has been affirmed on hyper-
surfaces of Euclidean 4-space E4 in [3].

In [2], the conjecture has been confirmed on hypersurfaces with at most two
distinct principal curvatures in n-dimensional Euclidean space En. Euclidean cases
have been studied in [1] and more others. Biharmonicity condition is defined based
on the Laplace operator ∆. Replacing ∆ by the Cheng-Yau map C, we study
the weakly C-biharmonic Lorentzian hypersurfaces in the Lorentz 5-space forms
with constant mean curvature. The operator C denoting the linear part of the
first variation of the second mean curvature function is an extension of the Laplace
operator which stands for the linear part of the first variation of the ordinary mean
curvature function.

2. Preliminaries

The notations and formulae are recalled from [4, 5]. The semi-Euclidean m-space
Em
ξ of index ξ = 1, 2 is equipped with the product defined by

⟨v,w⟩ = −
ξ∑

i=1

viwi +
m∑

i=ξ+1

viwi,

for each vectors v = (v1, . . . , vm) and w = (w1, . . . , wm) in Em. In this talk, we deal
with the 5-dimensional Lorentz space forms with the following common notation

M5
1(c) =

 S51(r) (if c = 1/r2)
L5 = E5

1 (if c = 0)
H5

1(−r) (if c = −1/r2),
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where, for r > 0, S51(r) = {v ∈ E6
1|⟨v,v⟩ = r2} denotes the 5-pseudosphere of

radius r and curvature 1/r2, and H5
1(−r) = {v ∈ E6

2|⟨v,v⟩ = −r2, v1 > 0} denotes
the pseudo-hyperbolic 5-space of radius −r and curvature −1/r2. In the canonical
cases c = ±1, we get the de Sitter 5-space dS5 := S51(1) and anti de Sitter 5-space
AdS5 = H5

1(−1).
Let M4

1 be a Lorentzian (timelike) hypersurface of a canonical Lorentz 5-space
form (i.e. M5

1(c) for c = 0,±1) defined by an isometric immersion x :M4
1 → M5

1(c).
The set of all smooth tangent vector fields onM4

1 is denoted by χ(M4
1 ). The symbols

∇ and ∇̄ denote the Levi-Civita connections on M4
1 and M5

1(c), respectively. Also,
∇0 denotes the Levi-Civita connection on E6

ν (for ν = 1, 2). The Weingarten
formula on M4

1 is ∇̄VW = ∇VW + ⟨SV,W ⟩n, for each V,W ∈ χ(M4
1 ), where S is

the shape operator associated to a unit normal vector field n on M4
1 . Furthermore,

in the case |c| = 1, M5
1(c) is a 5-hyperquadric with the unit normal vector field x

and the Gauss formula ∇0
VW = ∇̄VW − c⟨V,W ⟩x.

Associated to a basis chosen on M4
1 , the second fundamental form (shape oper-

ator) S has four different matrix forms [4, 5]. When the metric on M4
1 has diagonal

form G1 := diag[−1, 1, 1, 1], the shape operator S is of form D1 = diag[λ1, λ2, λ3, λ4]
or

D2 = diag[
[

λ1 λ2
−λ2 λ1

]
, λ3, λ4], (λ2 ̸= 0).

In the case of non-diagonal metric G2 = diag[
[

0 1
1 0

]
, 1, 1] the shape operator is

of form

D3 = diag[

[
λ1 + 1

2
1
2

− 1
2

λ1 − 1
2

]
, λ2, λ3] or D4 = diag[

[
λ1 0

√
2

2

0 λ1 −
√

2
2

−
√

2
2 −

√
2

2 λ1

]
, λ2].

When S = Dk, we say that M4
1 is a Dk-hypersurface.

Definition 2.1. We define the ordered quadruple {κ1;κ2;κ3;κ4} of principal cur-
vatures as follows:

{κ1;κ2;κ3;κ4} =


{λ1;λ2;λ3;λ4} (if S = D1)
{λ1 + iλ2;λ1 − iλ2;λ3;λ4} (if S = D2)
{λ1;λ1;λ2;λ3} (if S = D3)
{λ1;λ1;λ1;λ2} (if S = D4).

The characteristic polynomial of S onM4
1 is of the formQ(t) =

∑4
j=0(−1)jsjt

4−j ,

where, s0 := 1, si :=
∑

1≤j1<...<ji≤4 κj1 . . . κji for i = 1, 2, 3, 4.

Definition 2.2. The jth mean curvature Hj of M4
1 is defined by equation(

4
j

)
Hj = sj (for j = 1, 2, 3, 4). In special case, H1 is the ordinary mean curvature

H. The second mean curvature H2 and the normalized scalar curvature R satisfy
the equality H2 := n(n− 1)(1−R). If Hj is identically null, then M4

1 is said to be
(j − 1)-minimal.

Definition 2.3. (i) A D1-hypersurface M
4
1 is said to be isoparametric if all of it’s

principal curvatures are constant.
(ii) For k = 2, 3, 4, a Dk-hypersurface M

4
1 is isoparametric if the coefficients in the

minimal polynomial of its shape operator are constant.

Remark 2.4. Here we recall Theorem 4.10 from [4], which assures us that there is
no isoparametric timelike hypersurface of M5

1(c) with complex principal curvatures.
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Definition 2.5. The jth Newton transformation Nj : χ(M4
1 ) → χ(M4

1 ) is induc-
tively defined by

N0 = I, Nj = sjI− S ◦Nj−1, (j = 1, 2, 3, 4),

where, I is the identity map.

Now, we introduce a notation as

µi;k =
∑

1≤j1<···<jk≤4;jl ̸=i

κj1 · · ·κjk , (i = 1, 2, 3, 4; 1 ≤ k ≤ 3).

Definition 2.6. The Cheng-Yau operator on M4
1 , is defined by the formula

C(f) := tr(Nj ◦ ∇2f) for every f ∈ C∞(M4
1 ), where ⟨∇2f(V),W⟩ = ⟨∇V∇f,W⟩

for every V,W ∈ χ(M4
1 ).

Remark 2.7. In the special case, C(f) has the explicit expression

C(f) =
4∑

i=1

ϵiµi,1(eieif −∇eieif),

with respect to an orthonormal basis {e1, . . . , e4} of tangent space on a (local)
coordinate system of hypersurface M4

1 in M5
1(c). Where, ϵ1 = −1 and ϵi = 1 for

i = 2, 3, 4.

For a Lorentzian hypersurface x : M4
1 → M5

1(c), with a chosen (local) unit
normal vector field n, for an arbitrary vector a ∈ L5 we use the decomposition
a = aT + aN where aT ∈ TM is the tangential component of a, aN ⊥ TM , and we
have the following formulae.

Cx =12H2n− 12cH1x,

C2x =24 (N2∇H2 − cN1∇H1 − 9H2∇H2)

+ 12
[
CH2 − 12H2(2H1H2 −H3)− 12cH1H2

]
n

− 12c[CH1 − 12(H2
2 + cH2

1 )]x.

Definition 2.8. A hypersurface x : M4
1 → M5

1(c) is said to be C-biharmonic if it
satisfies the condition C2x = 0. It is said to be weakly C-biharmonic if it satisfies
the following conditions

(i) N2∇H2 − cN1∇H1 = 9H2∇H2

(ii) CH2 = 12H2(2H1H2 −H3) + 12cH1H2.
(2.1)

3. Main results

First, we consider the Lorentzian hypersurfaces of type D1 in M5
1(c) which have

diagonal shape operator.

Lemma 3.1. On every weakly C-biharmonic hypersurface of M5
1(c) with real prin-

cipal curvatures of constant multiplicities, the distribution of the space of prin-
cipal directions is completely integrable. In addition, if a principal curvature is
of multiplicity greater than one, then its multiplicity is constant on each integral
submanifold of the corresponding distribution.

Theorem 3.2. Every weakly C-biharmonic D1-hypersurface of M5
1(c) with one

principal curvature of multiplicity 4 is 1-minimal.
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Proof. Let x :M4
1 → M5

1(c) be such a hypersurface with a principal curvature λ of
multiplicity 4. Since H2 = λ2, it is enough to show that H2 is constant on the open
set U := {p ∈M4

1 : ∇H2
2 (p) ̸= 0}. With respect to the basis {ei| i = 1, 2, 3, 4} as a

local orthonormal frame of principal directions of the shape operator S on U such
that for i = 1, 2, 3, 4 we have Sei = λei and

(3.1) µi,2 = 3λ2, H2 = λ2.

From condition (2.1)(i) and the polar decomposition ∇H2 =
∑4

i=1 ϵi⟨∇H2, ei⟩ei,
we get

ϵi⟨∇H2, ei⟩(µi,2 − 9H2) = 0,

on U for i = 1, 2, 3, 4. Hence, if for some i we have < ∇H2, ei > ̸= 0 on U , then
we get µi,2 = 9H2 which, using equalities (3.1), gives λ2 = 0 and then H2 = 0 on
U , which is a contradiction. Hence U is empty and H2 is constant on M . So, λ is
constant.

Now, we show that H2 ≡ 0. Having assumed that (locally) H2 ̸= 0, by (2.1)(ii),
we obtain C(H2) = 12H2(2H1H2 −H3) = 0, which gives 2H1H2 −H3 = 0, then,
2λ3−λ3 = 0. Hence, again we get λ = 0 and then H2 = 0, which is a contradiction.
So H2 ≡ 0. �

Theorem 3.3. Every weakly C-biharmonic D1-hypersurface of M5
1(c) with exactly

two distinct principal curvatures of multiplicities 3 and 1 and constant mean cur-
vature is 1-minimal.

Theorem 3.4. Every weakly C-biconservative D1-hypersurface of M5
1(c) with ex-

actly two distinct principal curvatures of multiplicities 2 and constant mean curva-
ture is 1-minimal.

Now, we consider the Lorentzian hypersurfaces of type D2, D3 and D4 in M5
1(c)

which have non-diagonal shape operator. The method of proofs are similar to the
proof of Theorem 3.2.

Theorem 3.5. Let ψ : M4
1 → M5

1(c) be a weakly C-biharmonic D2-hypersurface.
If M4

1 has constant mean curvature and at most two distinct principal curvatures,
then it is 1-minimal.

Theorem 3.6. Every weakly C-biharmonic D3-hypersurface of M5
1(c) with con-

stant mean curvature and at most two distinct principal curvatures is 1-minimal.

Theorem 3.7. Let ψ : M4
1 → M5

1(c) be a weakly C-biharmonic D4-hypersurface
with constant mean curvature and at most two distinct principal curvatures. Then
it is 1-minimal.
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2-CONFORMAL VECTOR FIELDS IN SOL SPACE

GHODRATALLAH FASIHI-RAMANDI AND FARZANEH SHAMKHALI

Abstract. In this paper, we introduce the concept of 2-conformal vector fields

which are generalization of Killing and conformal vector fields on Reimannian
and semi-Reimannain manifolds. Then, we characterize proper 2-conformal
vector fields in Sol space.

Key words and phrases: Sol space; 2-conformal vector field; Reimannain

geometry.

1. Introduction and preliminaries

The model space Sol in the sense of W. Thurston [2] is the Cartesian space
R3(x, y, z) equipped with a homogeneous metric (see [1])

g = e2zdx2 + e−2zdy2 + dz2.

The Sol space is a Lie group G with respect to multiplication law

(x, y, z) ∗ (a, b, c) = (x+ e−za, y + ezb, z + c).

The left-invariant orthonormal frame field, i.e. the basis of the Sol space, is given
by

e1 = e−z∂x, e2 = ez∂y, e3 = ∂z.

The Levi-Civita connection ∇ of Sol space is given by

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = e3, ∇e2e3 = −e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

The non-vanishing components of the Reimannian curvature tensor are

R1212 = 1, R1313 = −1, R2323 = −1.

Then the Ricci tensor is given by R11 = R22 = 0 and R33 = −2. Hence the scalar
curvature is −2.

2-conformal field. A vector field Z ∈ X (M) is called 2-conformal vector field on
a Riemannian manifold (M, g) if

LZLZg = 2σg,

for some smooth function σ on M . Where, L is the Lie derivative operator on M .
If σ is identically zero, the vector field Z is said to be 2-conformal vector field.
Also, when σ be a constant the 2-conformal vector field Z is called homothetic and
otherwise it said to be non-homothetic field. Obviously, every conformal vector
field is 2-conformal vector field, hence, proper 2-conformal field is defined as a
2-conformal field which is not a conformal vector field.
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Theorem 1.1. Let Z ∈ X (M) be a 2-conformal vector field on a Riemannian
manifold (M, g). Then

g(∇Z∇XZ−∇[Z,X]Z, Y ) + g(X,∇Z∇Y Z−∇[Z,Y ]Z) + 2g(∇XZ,∇Y Z) = 2σg(X,Y ),

for any vector filed X,Y ∈ X (M). Here ∇ stands for the Levi-Civita connection of
g.

The following result is quit direct and helpful in the sequel.

Corollary 1.2. A vector field Z ∈ X (M) is 2-conformal if and only if

Rm(Z, X,Z, X) = g(∇XZ,∇XZ) + g(∇X∇ZZ, X)− σg(Z, X),

for any vector field X ∈ X (M), where Rm denotes the (0, 4)-type Reimannian
curvature tensor of g.

The symmetry of the above formula, shows that Z is 2-conformal vector field if
and only if

g(∇XZ,∇XZ) + g(∇Z∇XZ−∇[Z,X]Z, X) = σg(Z, X).

2. Main results

In this section we use the Corollary (1.2) to explore 2-conformal vector fields
(further called 2-CVF) in Sol space.
Let assume that the 2-conformal vector field Z is given by

Z = a(x, y, z)e1 + b(x, y, z)e2 + c(x, y, z)e3.

After long but straightforward computation the following system of PDE’s are
implied

(2c2 + ccz + aybx + axyb) + e−z(azcx + 3axc+ axzc)

+ ezbcy + e2z(2a2x + aaxx + b2x + c2x) + σa = 0,(2.1)

(2c2 − ccz + aybx + bxya) + e−z(bzcy + 3byc− byzc)

− e−zacx + e2z(2a2y + bbyy + 2b2y + c2y) + σb = 0,(2.2) (
(a− az)

2 + (b+ bz)
2 + 2c2z + cczz

)
+ ez(bcy + bzcy + bcyz)

+ e−z(−acx + azcx + acxz) + σc = 0(2.3)

Unfortunately, the 2-CVF is complicated nonlinear second order system of PDE’s.
Although we can’t find exact solutions, we can determine 2-conformal vector fields
that are generalization of fields ∂x and ∂y.

Let assume that Z = a(x, y, z)e1, i.e b = c = 0. Then the 2-CVF system became

(2.4) e−2z(2a2x + aaxx) + σa = 0, e2za2y = 0, (a− az)
2 = 0.

Form the second and the third equation of above, it follows a(x, z) = f(x)ez, and
from the first equation we get the differential equation

2f ′2 + ff ′′ + ezσf = 0,

which shows that σ = g(x)e−z. Hence we have

2f ′2 + ff ′′ + g(x)f = 0.

Obviously, this ordinary differential equation has not elementary function solution
for f = f(x) in general. But, if g(x) = α for some non-zero constant α (to make
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sure our field in not 2-Killing), we can solve the equation analytically. In this case,
we have

f(x) = c1
5
√
eαx + c2, c1, c2 ∈ R, c1 > 0.

Particulary for x = 0, c1 = 1 and c2 = 0, we get the field X1 = eze1 = ∂x.

Quit analogously, assuming that Z = b(x, y, z)e2, i.e. a = c = 0, the 2-CVF
system became

e−2zb2x = 0, e−2z2b2y + bbyy = 0, (b+ bz)
2 = 0.

The solution of this system is a function b(y, z) = c3
5
√
eαy + c4, and hence the

2-conformal vector field is Z = (c3
5
√
eαy + c4)e

−ze2. Particulary for y = 0, c3 = 1
and c4 = 0 we get the field X2 = e−ze2 = ∂y.

If we assume that Z = c(x, y, z)e3, i.e. a = b = 0, then the 2-CVF system
became

2c2 + ccz + e−2zc2x = 0, 2c2 − ccz + e2zc2y = 0, 2c2z + cczz + αc = 0.

But one can check that this system has no solution except c = 0. Therefore, there
is no 2-conformal vector field of form Z = c(x, y, z)e3.
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IS DARK MATTER AN EFFECT OF LORENTZIAN METRIC

INDEX?

GHODRATALLAH FASIHI-RAMANDI AND FARZANEH SHAMKHALI

Abstract. In this paper, we consider the Ricci soliton equation as a gener-
alization of Einstein manifolds. If the potential vector field of our soliton be
semi-Killing field, then deduce that it is related to the notion of so-called dark

matter in general theory of relativity. To have a non-trivial such soliton, the
metric of underlying manifold have to be Lorentzain. Hence, the dark matter
and dark energy can be an effect of Lorentzian metric index.

Key words and phrases: Ricci Soliton; General Relativity; Dark matter.

1. Introduction

Ricci solitons are the natural generalization of Einstein metrics. A (semi-)Riemannian
manifold (M, g) is said to be a Ricci soliton if there exists a vector field X ∈ X (M)
and a real scalar λ, such that

1

2
LXg +Ric = λg,

where LX and Ric denote the Lie derivative in the direction of X, and the Ricci
tensor, respectively.
It is called shrinking when λ > 0, steady when λ = 0, and expanding when λ < 0.
If X = ∇f the equation can also be written as

Ric + Hessf = λg,

and is called a gradient (Ricci) soliton. See [2, 3, 5] for background on Ricci solitons
and their connection to the Ricci flow. We remark here that on a compact manifold
Ricci solitons are always gradient solitons [12] and that every non-compact shrinking
soliton is a gradient soliton [11].
During the last two decades, the geometry of Ricci solitons has been the focus of
attention of many researchers. There are two aspects of the study of Ricci solitons,
one looking at the influence on the topology by Ricci soliton (see e.g. [1, 4, 8, 10])
and the other looking at its influence on its geometry (see e.g. [7, 6, 9]). In this
paper we are interested in the geometry of Ricci solitons arise frome a new geometric
vector fields (called semi-Killing field) on semi-Riemannain manifolds. Then, the
physical interpretation of our new structure will be presented.

Definition 1.1. A vector field X on a semi-Riemannian manifold (M, g) is said
to be a semi-Killing vector field, if LXg = 2αX♭ ⊗X♭ for a constant α where, X♭

is dual 1-form of X.
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Clearly, the zero vector field X = 0 is a semi-Killing vector field and every Killing
vector field X is semi-Killing with α = 0. Also, we can construct a non-trivial semi-
Killing vector field. Let M = (a, b) ⊂ R be an open interval and consider g = ds2.
Suppose thatX is a nowhere zero semi-Killing vector field onM with some non-zero
α. If X♭ = h(s)ds, then the condition LXg = 2αX♭ ⊗X♭ lead us to the following
ordinary differential equation

−2h′(s) = 2αh2(s),

and solving this equation gives h(s) =
1

αs+ β
for some constant β.

Theorem 1.2. Let X be a non-zero semi-Killing vector field on a closed (compact
without boundary) Riemannain manifold (M, g). Then X is a Killing vector field.

The above theorem shows that the set of semi-Killing vector fields on closed
manifolds coincides with the set of all Killing vector field on them. Hence, exis-
tence of semi-Killing vector fields not only depends on the geometry of underlying
manifold but also requires some topological constraints on the manifold.
Homogeneous spaces are among the nicest examples of Riemannian manifolds. In
the following, we show that there is no non-trivial left-invariant semi-Killing vec-
tor field on a homogeneous manifold M with left-invariant metric g. Let X be a
non-zero semi-Killing left invariant vector field on a homogeneous manifold (M, g).

Theorem 1.3. Left-invariant semi-Killing vector fields on homogeneous spaces are
Killing vector fields.

2. Main results

In this section, prove our main results. First we prove that if (Mn, g,X, λ) be
a Reimannain Ricci soliton with potential semi-Killing field, then X has to be a
Killing vector field and (M, g) reduces to be an Einstein manifold.

Let (M, g,X, λ) is a Riemannain Ricci soliton with LXg = 2αX♭ ⊗ X♭. Then,
we have

Ric = −2αX♭ ⊗X♭ + λg.

Tracing both sides of the above equation, we find R = −2α|X|2+nλ, so by addition
suitable expression to each side of the equation, we obtain

Ric− 1

2
Rg + (

n− 2

2
)λg = α(|X|2g − 2X♭ ⊗X♭).

As Einstein tensor Ric − 1

2
Rg is divergence free, so the right hand side of above

equation must be divergence free.

Lemma 2.1. Let X be a non-zero vector field on a Riemannian manifold (M, g). If
divergence of symmetric tensor T := |X|2g− 2X♭ ⊗X♭ vanishes, then div(X) = 0.

Now, with the assumptions of the previous Lemma, we can prove the following
Theorem.

Theorem 2.2. Riemannian Ricci solitons (Mn, g,X, λ) with LXg = 2αX♭ ⊗X♭,
are Einstein manifold.
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Proof: Since (Mn, g,X, λ) is a Ricci soliton, we have

Ric + 2αX♭ ⊗X♭ = λg.

If X be identically zero, then we have nothing to prove. Let X be a non-zero vector
field, so Lemma 2.1 indicates that div(X) = 0. On the other hand, we have

LXg = 2αX♭ ⊗X♭.

Tracing both sides of the above formula gives

div(X) = α|X|2,
cosequently, α = 0, and we have completed the proof.

The above theorem shows that there is no not-trivial Riemannian Ricci soliton
with semi-Killing potential vector fields. Hence, we have to look for such structure
in Lorentzian or other semi-Riemannain settings.

Theorem 2.3. If (Mn, g,X, λ) be a Lorentz Ricci soliton with LXg = 2αX♭⊗X♭,
then M has constant scalar curvature R.

2.1. Application to physics. In this subsection, let (M4, g,X, λ) is a Lorentz
Ricci soliton which we regard it as a space-time manifold. Then, the Ricci soliton
equation

Ric +
1

2
LXg = λg,

become a generalization of Einstein field equation. In fact, tracing the both side of
the above equation yields R + div(X) = 4λ. the above equation can be rewritten
as

Ric− 1

2
Rg + λg =

1

2
(div(X)g − LXg).

In general theory of relativity, the scalar curvature R is related to distribution of
mass in points of space-time, so regardless of λ which can be interpreted as cos-
mological constant, we may deduce that div(X) is related to notion of matter in

space-time and
1

2
(div(X)g − LXg) is the momentum-energy tensor of this matter.

Therefore, a Ricci soliton is a geometric structure which capable of describing mat-
ter and gravity, simultaneously.

However, the Ricci flow can be a framework for geometrization of matter in
general relativity, it gives no more information about g as a potential for gravity
and X as a potential for matter. Hence, it is natural to posing any other relation on
X and g. If X be a Killing vector field, then the Ricci soliton equations coincides
to Einstein equation in vacuum, and X gives the symmetries of this space-time. In
this paper, we suggest X to satisfy the equation LXg = 2αX♭ ⊗X♭ for a non-zero
constant α. Under this assumption, the Ricci soliton equation as a generalization
of Einstein field equation, becomes

Ric− 1

2
Rg + λg = α(

|X|2

2
g −X♭ ⊗X♭).

This equation shows that symmetric 2-tensor T = |X|2g−X♭ ⊗X♭ must be diver-
gence free. Applying this fact, a similar argument with Theorem 2.2 shows that X
has to be a light-like vector field.
As we mentioned before, such structure in Riemannain settings lead to X = 0, and
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the structure reduces to Einstein manifold. But, as soon as we consider this struc-
ture in Lorentzian setting, we derive new field equation, with an internal relation
between X and g. So, in our theory, X can be in related to the notion of dark
matter in general relativity.
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∗-CONFORMAL CURVATURE OF CONTACT METRIC

MANIFOLDS

HANNANE FARAJI, BEHZAD NAJAFI, AND TAYEBEH TABATABAEIFAR

Abstract. We aim to introduce a new tensor, called ∗-conformal curvature
tensor, in the contact manifolds. We provide ∗-conformal curvature tensor in
Sasakian manifolds. Next, we deduce some properties of this tensor in Sasakian
manifolds.

Key words and phrases: : ∗-conformal curvature; Sasakian manifolds.

1. Introduction

A differentiable manifold M2n+1 has an almost contact structure if it admits a
1-form η, a characteristic vector field ξ, and a (1,1) tensor field φ, which is satisfies

(1.1) φ2 = −I + η ⊗ ξ, η(ξ) = 1,

where I indicates the identity endomorphism. Then, by (1.1), we can see that

(1.2) φξ = 0, η ◦ φ = 0.

If an almost contact manifold M2n+1 admits a Riemannian metric g with the prop-
erty

(1.3) g(φX,φY ) = g(X,Y )− η(X)η(Y ),

for any vector fields X,Y ∈ χ(M). Then (M2n+1, g, η, ξ, φ) is called almost contact
metric manifold (or for simplicity, ACM-manifold). An ACM-manifold is called
normal if the (1,2)-type torsion tensor Nφ vanishes, where Nφ = [φ,φ] + 2dη ⊗ ξ,
where [φ,φ] is the Nijenhuis tensor of φ. A normal ACM-manifold is called Sasakian
manifold. A Sasakian manifold is also characterized by

(∇Xφ)Y = g(X,Y )ξ − η(Y )X,

for any vector fields X,Y ∈ χ(M). On a Sasakian manifold beside (1.1) and (1.3),
we have

(1.4) ∇Xξ = −φX, R(X,Y )ξ = η(Y )X − η(X)Y.

Several concepts in complex geometry have a counterpart in contact geometry.
Tachibana introduces ∗-Ricci tensor on an almost Hermitian manifold. Afterward,
Hamada defines the ∗-Ricci on the real hypersurface of a non-flat complex space
form. This notion on an ACM-manifold (M, g, η, ξ, φ) is defined as

(1.5) ∗Ric(X,Y ) =
1

2
trace

{
Z → R(X,φY )φZ

}
, ∀X,Y ∈ χ(M).

2010 Mathematics Subject Classification. 53D10, 53C25.
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The ∗-Ricci operator ∗L is defined by g(∗LX, Y ) = ∗Ric(X,Y ). With the help of
∗-Ricci tensor, several authors have investigated ∗-Ricci soliton in contact geometry
(see [2]).

In a Riemannian manifold (M2n+1, g), the conformal curvature tensor C is de-
fined by

C(X,Y )Z =K(X,Y )Z +
r

(2n)(2n− 1)

(
g(Y, Z)X − g(X,Z)Y

)
− 1

2n− 1

(
Ric(Y,Z)X −Ric(X,Z)Y + g(Y,Z)LX − g(X,Z)LY

)
,

(1.6)

where K denotes the curvature tensor of (1,3) type, Ric indicates the Ricci tensor,
r is the scalar curvature, and L is the Ricci operator (M, g).

2. Main results

Definition 2.1. In a contact metric manifold of dimension 2n+1, the ∗-conformal
curvature tensor is defined by

∗C(X,Y )Z =K(X,Y )Z +
∗r

2n(2n− 1)

(
g(Y,Z)X − g(X,Z)Y

)
− 1

2n− 1

(
∗Ric(Y,Z)X − ∗Ric(X,Z)Y + g(Y, Z)∗LX − g(X,Z)∗LY

)
,

(2.1)

where ∗r is the trace of the ∗-Ricci tensor, called ∗-scalar curvature.

Proposition 2.2. In a contact metric manifold, the ∗-conformal curvature tensor
obeys the following.

(1) ∗C(X,Y )Z = −∗C(Y,X)Z,
(2) ∗C(X,Y )Z + ∗C(Y, Z)X + ∗C(Z,X)Y = ∗Ric(X,Y )Z + ∗Ric(Y, Z)X +

∗Ric(Z,X)Y .

Definition 2.3. A contact metric manifold is named ∗η-Einstien if

∗Ric(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a, and b are smooth scalar functions on the manifold.

In [2], Ghash and Patra obtain the ∗-Ricci tensor in a (2n + 1)-dimensional
Sasakian manifold is as follows

(2.2) ∗Ric(X,Y ) = Ric(X,Y )− (2n− 1)g(X,Y )− η(X)η(Y ).

Theorem 2.4. Suppose M2n+1 is a manifold with a Sasakian structure (g, η, ξ, φ).
(M2n+1, g, η, ξ, φ) is an η-Einstien manifold if and only if it is an ∗η-Einstien
manifold.

Proof. If (M2n+1, g, η, ξ, φ) is an η-Einstien manifold, then there are smooth scalar
functions a and b on M , so that

Ric(X,Y ) = ag(X,Y ) + bη(X)η(Y ).(2.3)

From (2.2) and (2.3), we have

∗Ric(X,Y ) = ãg(X,Y ) + b̃η(X)η(Y ),(2.4)
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where ã = a − (2n − 1) and b̃ = b − 1. So (M2n+1, g, η, ξ, φ) is a ∗η-Einstien
manifold. �

Equation (2.2) provides

(2.5) ∗LX = LX − (2n− 1)X − η(X)ξ,

and

(2.6) ∗r = r − 4n2,

where ∗Ric(X,Y ) = g(∗LX, Y ) and ∗r = trace of ∗L. With the help of (2.2), (2.5)
and (2.6) from (2.1), we get

∗C(X,Y )Z =C(X,Y )Z +
1

2n− 1

(
η(Y )η(Z)X − η(X)η(Z)Y + g(Y, Z)η(X)ξ

− g(X,Z)η(Y )ξ
)
− 2n− 2

2n− 1

(
g(Y,Z)X − g(X,Z)Y

)
.

(2.7)

Proposition 2.5. In a Sasakian manifold, the ∗-conformal curvature tensor is
given by (2.7).

Corollary 2.6. In a Sasakian manifold, the ∗-conformal curvature tensor obeys
the relation

∗C(X,Y )Z + ∗C(Y, Z)X + ∗C(Z,X)Y = 0.

In a 3-dimensional manifold, C vanishes identically, and hence, we have

∗C(X,Y )Z =η(Y )η(Z)X − η(X)η(Z)Y

+ g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ.(2.8)

In this case, (2.8) infers ∗C does not vanish identically. Indeed, for any non-zero

vector filed X̃ in the kernel of η, we have

∗C(2X̃ + ξ, X̃ + ξ)ξ = X̃.

Definition 2.7 ([4]). A contact metric manifold is called ξ-conformally flat if
C(X,Y )ξ = 0.

Every Sasakian manifold becomes a K-contact manifold, but its inverse holds
only in 3 dimensional. In [4], the authors prove that a K-contact manifold is ξ-
conformally flat if and only if it is an η-Einstien Sasakian manifold.

Suppose a Sasakian manifold is ξ-conformally flat and ξ-∗conformally flat, i.e.,
∗C(X,Y )ξ = 0. Then from (2.1), it follows

(2.9) ∗C(X,Y )ξ = C(X,Y )ξ +
3− 2n

2n− 1

[
η(Y )X − η(X)Y

]
.

By hypothesis, ∗C(X,Y )ξ = 0 = C(X,Y )ξ. Hence (2.9) and (1.4) turn into
R(X,Y )ξ = 0.

Lemma 2.8 ([1]). Let M2n+1 be a contact metric manifold that satisfies the relation
R(X,Y )ξ = 0 for all X,Y . Then M is locally isometric to the Riemannian product
of a flat (n + 1)-dimensional manifold and an n-dimensional manifold of positive
curvature 4, and flat for n = 1.
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Theorem 2.9. If a Sasakian manifold M2n+1 is ξ-conformally flat along with ξ-
∗conformally flat, then the manifold M2n+1 is locally isometric to En+1(0)×Sn(4),
(n > 1).

If X is a conformal vector field, that is, LXg = 2ρg for some smooth function ρ,
then it is known that LXC = 0. Hence

LX
∗C(Y,Z)W =

1

2n− 1
LX

[
η(W )(η(Y )Z − η(Z)Y )− (g(Z,W )η(Y )− g(Y,W )η(Z))ξ

]
+

2n− 2

2n− 1
2ρ

[
g(Z,W )Y − g(Y,W )Z

]
.

(2.10)

According to S. Tanno and Blair [3] on an ACM-manifold, if there exists a vector
field X obeying LXη = ση for certain function σ, X is called a contact vector field.
Especially, X is called a strict infinitesimal contact transformation if σ = 0.

Suppose the vector field X is a strict contact vector field and conformal vector
field, then from (2.10), we get

LX
∗C(Y,Z)W = 2ρ

2n− 2

2n− 1

[
g(Z,W )Y − g(Y,W )Z

]
,(2.11)

where we have used LXξh = −2ρξh. In particular, if n = 1, then

LX
∗C(Y,Z)W = 0.

Lemma 2.10 ([3]). If a vector field X satisfies LXη = 0, then X satisfies LXξ = 0.

By Lemma 2.10, one obtains the following corollary.

Corollary 2.11. Let X be a conformal vector field with a strict infinitesimal con-
tact transformation. then X is Killing.

Proof. Suppose X is a strict infinitesimal contact transformation, i.e., LXη = 0.
Since X is a conformal vector field, we have LXg = 2ρg. Then by Lemma 2.10, we
get LXξ = 0, which means that ρ = 0. �

Theorem 2.12. The ∗-Conformal tensor is invariant under the restricted contact
and conformal vector fields on normal contact metric manifolds.

References

[1] D. E. Blair, Two remarks on contact metric manifolds, Tohoku Math. J. 29 (1977), 319-324.
[2] A. Ghosh and D. S. Patra, ∗-Ricci Soliton within the framework of Sasakian and (k, µ)-

contact manifold, Int. J. Geom. methods modern Phys. 15 (2018), 1850120.
[3] S. Tanno, Note on infinitesimal transformations over contact manifolds. Tohoku Mathemat-

ical Journal, Second Series, 14(4) (1962) 416-430.

[4] G. Zhen, J. L. Cobrerizo, L. M. Ferandez and M. Fernadez, On ξ-conformally flat contact
metric manifolds, Indian J. Pure. Appl. Math. 28 (1997), 725-734.



∗-CONFORMAL CURVATURE OF CONTACT METRIC MANIFOLDS 117

Department of Mathematics and Computer Sciences, Amirkabir University of Tech-

nology (Tehran Polytechnic), Tehran. Iran
E-mail address: hanaaa.faraji@aut.ac.ir

Department of Mathematics and Computer Sciences, Amirkabir University of Tech-

nology (Tehran Polytechnic), Tehran. Iran
E-mail address: behzad.najafi@aut.ac.ir

Department of Mathematics and Computer Sciences, Amirkabir University of Tech-
nology (Tehran Polytechnic), Tehran. Iran

E-mail address: t.tabatabaeifar@aut.ac.ir



The 12th Seminar on Geometry and Topology

University of Tabriz, 1-2 Mordad 1402, July. 23-24, 2023

RICCI SOLITONS AND RICCI BI-CONFORMAL VECTOR

FIELDS ON THE MODEL SPACE Sol40

MAHIN SOHRABPOUR AND SHAHROUD AZAMI

Abstract. In the present paper, we classify the Ricci solitons and the Ricci

bi-conformal vector fields on model space Sol40. Also, we show that which of
them are gradient vector fields and Killing vector fields.

Key words and phrases: Ricci bi-conformal vector fields; Ricci solitons;
Killing field.

1. Introduction

Conformal vector fields play an important role in geometry and physics. In ge-
ometry, they are used to study conformal transformations and conformally invariant
geometric quantities. In physics, they aries in theories with conformal symmetry,
such as string theory and conformal field theory. Also, conformal vector fields
preserve angles and ratios of distances between points on the manifolds.

A conformal vector field is a smooth vector field X on a Riemannian manifold
(M, g) if a smooth function like f that named a potential function, exists on M
that satisfies LXg = fg, where LXg is the Lie derivative of g with respect X.
So if the potential function f = 0 , X is a Killing vector field. In other hand,
if X is a non-Killing vector field, X is called to be a nontrivial conformal vector
field. We say that X is a gradient conformal vector field, if X is a gradient of a
smooth function. A conformal vector field explain completely in [4, 3]. At first,
Garcia-Parrado and Senovilla introduced bi-conformal vector fields [7], then De et
al. defined Ricci bi-conformal vector fields in [2]. If the following equations hold
for some smooth functions α and β and any vector fields Y,Z, then the vector field
X is called a Ricci bi-conformal vector field:

(1.1) (LXg)(Y, Z) = αg(Y, Z) + βS(Y,Z),

and

(1.2) (LXS)(Y,Z) = αS(Y, Z) + βg(Y,Z),

where S is the Ricci tensor of M .
One of the most important and attractive topics in physics and geometry is study

of the Ricci solitons that are natural generalization of Einstein metrics. At first
the Ricci soliton was introduced by Hamilton [8], have been studied in Lorentzian
manifolds. On a pseudo-Riemannian manifold (M, g), it is defined by

(1.3) LXg + S = λg,

where X is a smooth vector field on M , and λ is a real number [1].
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If the group of isometries of (M, g) acts transitivity on M , the connected pseudo-
Riemannian manifold (M, g) is named to be a homogeneous. Riemannian homo-
geneous spaces are a fundamental class of manifolds which study is common in
geometry, algebra and group theory. A Thurston geometry (G,X) is a homoge-
neous space where X is connected and simply connected, let G be a group and G
acts transitively on X with compact point stabilizers such that G is not contained
in any larger group of diffeomorphisms of X, and there is at least one compact
manifold modeled on (G,X). Thurston geometry is a subset of Riemannian ho-
mogeneous spaces, that studied in dimension three for three-manifolds. So the
possible Riemannian structures of compact orientable three-manifolds are similar
to the uniformization theorem for surfaces that are compact and orientable. We
can decompose any three-manifold into pieces and each of them admits a Riemann-
ian metric locally isometric to one of eight three-dimensional model spaces, the
Thurston geometries R3, S3, H3, S2 ×R, H2 ×R, S̃L(2,R), Nil3 and Sol3. Eight
three-dimensional Thurston spaces explain completely in [9, 10]. The model space
(Sol40, g) is one of the four-dimensional Thurston geometries. Filipkiewicz in [6]
listed 19 types of Thurston geometries in dimension four. According to Wall [11],
the space (Sol40, g) belongs to 14 spaces among these model spaces that admit com-
plex structure compatible with the geometric structure, for more information study
[5].

2. the model space Sol40

The primary manifold of the model space Sol40 is R4(x, y, z, t) with the group
operation

(x1, y1, z1, t1) ∗ (x2, y2, z2, t2) = (x1 + et1x2, y1 + et1y2, z1 + e−2t1z2, t1 + t2).(2.1)

The left invariant Riemannian metric g of Sol40 is obtained as follows

g = e−2t(dx2 + dy2) + e4tdz2 + dt2,(2.2)

Therefore, we consider the metrically dual left invariant basis vector fields as

e1 = et
∂

∂x
, e2 = et

∂

∂y
, e3 = e−2t ∂

∂z
, e4 =

∂

∂t
.(2.3)

So basis vector fields satisfy the following brackets.

[e1, e2] = [e1, e3] = [e2, e3] = 0, [e4, e1] = e1

[e4, e2] = e2, [e4, e3] = −2e3.

The Levi-Civita connection of manifold (M, g) is shown by ∇. We can define the
curvature tensor R of (M, g) as follows R(X,Y ) = ∇[X,Y ] − [∇X ,∇Y ] and we
define the Ricci tensor S by S(X,Y ) = tr(Z → R(X,Z)Y ). The components of
Levi-Civita connection and Ricci tensor on Sol40 are calculated by

(2.4) ∇eiej =


e4 0 0 −e1
0 e4 0 −e2
0 0 −2e4 2e3
0 0 0 0

 , S =


0 0 0 0
0 −1 0 0
0 0 −4 0
0 0 0 6

 .

For any vector field X = Xkek by

(LXg)(ei, ej) = Xkg(∇eiek, ej) + eiX
kg(ek, ej) +Xkg(ei,∇ejek) + ejX

kg(ei, ek),
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we compute the Lie derivative of the metric g in direction to vector field X as follows

(LXg)11 = −2X4 + 2e1X
1,

(LXg)12 = e1X
2 + e2X

1,

(LXg)13 = e1X
3 + e3X

1,

(LXg)14 = X1 + e1X
4 + e4X

1,

(LXg)22 = 2e2X
2 − 2X4,

(LXg)23 = e2X
3 + e3X

2,

(LXg)24 = X2 + e2X
4 + e4X

2,

(LXg)33 = 2e3X
3 + 4X4,(2.5)

(LXg)34 = −2X3 + e3X
4 + e4X

3,

(LXg)44 = 2e4X
4.

Further, using the formula

(LXS)(ei, ej) = −XkS([ek, ei], ej)+eiX
kS(ek, ej)−XkS(ei, [ek, ej ])+ejX

kS(ei, ek),

the Lie derivative of the Ricci tensor in direction X is determined by

(LXS)11 = 0,

(LXS)12 = −e1X
2,

(LXS)13 = −4e1X
3,

(LXS)14 = 6e1X
4,

(LXS)22 = −2e2X
2 + 2X4,

(LXS)23 = −e3X
2 − 4e2X

3,

(LXS)24 = −X2 + 6e2X
4 − e4X

2,

(LXS)33 = −8e3X
3 − 16X4,(2.6)

(LXS)34 = 8X3 − 4e4X
3 + 6e3X

4,

(LXS)44 = 12e4X
4.

3. Ricci solitons and Ricci bi-conformal vector fields on the model
space Sol40

Now, we solve the equation (1.3) on the model space Sol40. Substituting (2.4),
(2.5), and (2.6) into (1.3), we get the following theorem.

Theorem 3.1. The vector field X on (Sol40, g) where g given by (2.2), is a Ricci
soliton vector field if and only if

X = (3x+ b2x+ a4)
∂

∂x
+ (

7

2
y + b2y + a2)

∂

∂y
+ (5z − 2b2z + a1)

∂

∂z
+ b2

∂

∂t
.

Now, we can investigate that which of Ricci solitons on (Sol40, g) is as gradient
vector field. Now, consider X = ∇f on (Sol40, g) with potential function f .

Thus we have the following corollary.

Corollary 3.2. There is not any gradient Ricci soliton X on (Sol40, g).

We solve the equation (1.1) and (1.2) on the model space Sol40. Replacing (2.2),
(2.4), (2.5), and (2.6) into (1.1) and (1.2), we get the following theorem.
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Theorem 3.3. The vector field X on (Sol40, g) where g given by (2.2), is Ricci
bi-conformal vector field if and only if

X = (c2x+ c4)
∂

∂x
+ (c2y + c3)

∂

∂y
− 2c2z

∂

∂z
+ c2

∂

∂t
.

Thus, we have the following theorem.

Theorem 3.4. Any Ricci bi-conformal vector field X on (Sol40, g) is gradient vector
field with potential function f if and only if f = c6.

At the end we can state:

Corollary 3.5. Any Ricci bi-conformal vector field X on (Sol40, g) is Killing vector
field.
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ON ϕ-RECURRENT MIXED 3-STRUCTURES
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Abstract. In the present paper, we study mixed 3-structure manifolds which

their Riemannian curvature is ϕ-recurrent. In special case, we study mixed
3-cosymplectic manifolds and prove some results on 1-forms of the recurrent
equation.

Key words and phrases: curvature; ϕ-recurrent; mixed 3-cosymplectic.

1. Introduction

Recurrent manifolds are generalization of locally symmetric manifolds. On lo-
cally symmetric manifolds covariant derivative of the Riemannian curvature is equal
to 0. The sectional curvature of contact locally symmetric manifolds is constant
which is a strong condition on the manifold. Thus Takahashi studied locally ϕ-
symmetric manifolds [6] which satisfy ϕ(∇R) = 0. As a generalization of all of the
above concepts the notion of ϕ-recurrent manifolds have been introduced [3].

In this paper, we study ϕ-recurrent mixed 3-structure manifolds. We prove some
properties of ϕ-recurrent mixed 3-cosymplectic manifolds and give an example.

2. Main results

Let M be an odd dimensional semi-Riemannian manifold such that there exist
a vector field ξ, a 1-form η and a (1,1)-tensor field ϕ, on the manifold which the
following condition hods

(2.1) ϕ2X = ϵ(−X + η(X)ξ) , η(ξ) = 1 ∀X ∈ TM,

then (M, ξ, η, ϕ) is said to be an almost contact manifold for ϵ = 1 and an almost
para-contact manifold for ϵ = −1 [1, 5].

Definition 2.1. Let a semi-Riemannian manifold (M, g) have two almost para-
contact structures (ξi, ηi, ϕi), i = 1, 2, and an almost contact structure (ξ3, η3, ϕ3)
such that satisfy as follows

(2.2) ηi(ξj) = 0, ϕi(ξj) = ϵjξk, ϕj(ξi) = −ϵiξk, ηi(ϕj) = −ηj(ϕi) = ϵkηk,

(2.3) ϕioϕj − ϵiηj ⊗ ξi = −ϕjoϕi + ϵjηi ⊗ ξj = ϵkϕk,

(2.4) g(ϕiX,ϕiY ) = ϵi[g(X,Y )− τiηi(X)ηi(Y )], ∀X,Y ∈ TM,

in which (i, j, k) permutes for (1, 2, 3) and τi = g(ξi, ξi) = ±1.
Then (M, ξi, ηi, ϕi, g)i∈{1,2,3} is said to be a metric mixed 3-structure manifold [4].
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In addition, a metric mixed 3-structure manifold (M, ξi, ηi, ϕi, g)i∈{1,2,3} is called
a mixed 3-cosymplectic manifold if

(2.5) (∇Xϕi)Y = 0, ∀X,Y ∈ TM, i ∈ {1, 2, 3}.

Theorem 2.2 ([2]). Let (M, ξi, ηi, ϕi, g)i∈{1,2,3} be a mixed 3-cosymplectic mani-
fold. Then the Ricci tensor of M is flat.

Definition 2.3. A metric mixed 3-structure manifold (M, ξi, ηi, ϕi, g)i∈{1,2,3} is
called a 3-ϕ-recurrent manifold, if the following condition holds

(2.6) ϕ2
i (∇WR)(X,Y, Z) = Ai(W )R(X,Y )Z, i = 1, 2, 3.

Here Ais are 1-forms on the manifold.

In the rest of the paper, we suppose the manifold admits mixed 3-cosymplectic
structure.

Lemma 2.4. On a mixed 3-cosymplectic manifold (M, ξi, ηi, ϕi)i∈{1,2,3}, the tensor
fields ϕi’s satisfy

(2.7) ϕ2
i oϕ

2
j = −ϵk[ϵiϕ

2
i + ηj ⊗ ξj ] = −ϵk[ϵjϕ

2
j + ηi ⊗ ξi],

in which ϵ1 = ϵ2 = −ϵ3 = −1.

Theorem 2.5. On a non-flat 3-ϕ-recurrent mixed 3-cosymplectic manifold (M, ξi, ηi, ϕi),
i ∈ {1, 2, 3}, the 1-forms Aj and Ai satisfy in the following condition

Aj(W ) = ϵkAi(W ), ∀W ∈ TM,

where ϵ1 = ϵ2 = −ϵ3 = −1 and {i, j, k} = {1, 2, 3}.

Proof. Since (M, ξi, ηi, ϕi), i ∈ {1, 2, 3} is a mixed 3-cosymplectic manifold, we ap-
ply ϕ2

i on Equation (2.6) and use Lemma 2.4 and obtain

−ϵk[ϵiϕ
2
i (∇WR)(X,Y, Z) + ηj((∇WR)(X,Y, Z))ξj ] =

ϵiAj(W )[−R(X,Y )Z + ηi(R(X,Y )Z)ξi].(2.8)

Hence we have,

(ϵiAj(W )− ϵkϵiAi(W ))R(X,Y )Z = ϵkηj((∇WR)(X,Y, Z))ξj

+ ϵiηi(Aj(W )R(X,Y )Z)ξi.(2.9)

By applying ϕj and then ϕk and ηk on (2.9) and by some computations we get

(2.10) (ϵiAj(W )− ϵkϵiAi(W ))ϕkoϕj(R(X,Y )Z) = 0.

and so,

(2.11) R(X,Y )Z = ηk(R(X,Y )Z)ξk.

But the previous equation implies R = 0 which is a contradiction because the
manifold is non-flat, thus, the Equation (2.10) implies Aj(W ) = ϵkAi(W ). �

By using Theorem 2.2, we have the following theorem.

Theorem 2.6. Let (M, ξi, ηi, ϕi, g)i∈{1,2,3} be a 3-ϕ-recurrent mixed 3-cosymplectic
manifold. Then the covariant derivative of the Riemannian curvature of M van-
ishes.
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Example 2.7. We suppose M =

{
(xi)i=1,11 ∈ R11|

∑8
i=5 xi ̸= 0

}
, and put ϕi’s as

follows

ϕ1((xi)i=1,11) = (−x2,−x1,−x4,−x3, . . . , 0, x11, x10),

ϕ2((xi)i=1,1) = (x4,−x3,−x2, x1, . . . ,−x10,−x9, 0),

ϕ3((xi)i=1,11) = (x3,−x4,−x1, x2, . . . , x11, 0,−x9).

Now we define f = x5 + x6 + x7 + x8 and

g =
4∑

i=1

(−1)idxidxi +
8∑

i=5

(−1)if2dxidxi + dx9dx9 − dx10dx10 + dx11dx11.

The structure vector fields are defined as ξ1 = ∂x9, ξ2 = ∂x11, ξ3 = −∂x10 and
ηi’s are dual of them. One can show that (M, ξi, ηi, ϕi, g)i∈{1,2,3} is a metric mixed
3-structure manifold and curvature tensor R and its covariant derivative have the
following non-zero components

Rrssr = −Rijji = 4, i ̸= j, r ̸= s, i, j ∈ {5, 7}, r, s ∈ {6, 8},
−Rriis = −Rjiir = Rirrj = Rsrri = 2,

Rrssr,k = −Rijji,k =
−24

f
,

Rriis;k = Rjiir;k = −Rirrj;k = −Rsrri;k =
12

f
,

for i ̸= j, r ̸= s, i, j ∈ {5, 7}, r, s ∈ {6, 8} and k = 5, . . . , 8.
Therefore, the one form of the recurrent condition can be taken as

A(∂xk) =

{ −6
f , k = 5, . . . , 8;

0, k = 1 . . . 4, and k = 9, 10, 11.

So, for any X,Y, Z,W ∈ TM , we can write

ϕ2
i (∇WR)(X,Y, Z) = Ai(W )R(X,Y, Z, U), i = 1, 2, 3,

where A1(W ) = A2(W ) = −A3(W ) = A(W ) which means M is a 3-ϕ-recurrent
manifold.
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MANIFOLDS
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Abstract. In this article, we will give a sufficient and necessary condition
that a hypersurface of nearly Kähler manifolds with induced almost contact
structure must be a contact hypersurface. Also, we show that such hypersur-

face can not be totally geodesic or totally umbilic.
Key words and phrases: Contact hypersurface; Nearly Kähler manifolds;

almost contact structure.

1. Introduction

An almost complex manifold (M,J) (where J is (1,1)-form and J2 = −Id) is
called almost Hermitian there exist Riemannain metric like g such these metric
is compatible with J . this means that J∗g = g. An almost Hermitian manifold
(M, g, J ) is called nearly Kähler manifold, if its Levi-Civita connection ∇ satisfies
(∇XJ)Y + (∇Y J)X = 0. These manifolds appear moreover in a natural way in
the GrayHervella classification [4] as one class of the 16 classes of almost Hermit-
ian manifolds.Recent interest in nearly Khler manifolds came from the fact, that
in dimension 6 these manifolds are related to the existence of Killing spinors and
that they admit a Hermitian connection with totally skew-symmetric torsion. Such
connections are of interest in string theory [3].
In 2002, Nagy [5] proved that every simply connected complete nearly Khler man-
ifold is isometric to a Riemannain product space of 3-classes naturally reductive
3-symmetric spaces 2- twister spaces over positive Quaternion-Khler manifolds and
3- six dimensional nearly Khler manifolds and Butruile in 2008 [1] showed that
there exist only four complete,homogeneous 6-dimensional nearly Khler manifolds
(up to homothety and covering space) and all of them are 3-symmetric.An impor-
tant question in nearly Khler geometry is the fundamental explanation of rareness
of such manifolds or difficulties of introducing non-homogeneous examples. Re-
cently Foscolo and Haskin [2] proved that there exist new non-homogeneous Nearly
Kähler structure on S6 and S3 × S3. they also shown that this non-homogeneous
example of co-homogeneity one and conjectured that the all co-homogeneity one
example are listed as non-homogeneous Nearly Kähler structure on S6 and S3×S3.
therefore the study of hypersurface of 6-Nearly Kähler manifold can be important.
In this paper we study hypersurface of nearly Kähler manifolds with induced almost
contact structure and investigate for a sufficient and necessary condition that such
hypersurface must be a contact hypersurface also we prove that this hypersurface
can not be totally geodesic or totally umbilic.
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2. Main results

Lemma 2.1 ([3]). on Nearly kähler manifold (M,J, g) there exists a unique con-
nection ∇ with totally skew-symmetric torsion T∇ satisfying ∇g = 0 and ∇J = 0.
More precisely

∇ = D − 1

2
JΣ, T∇ = −JoΣ,(2.1)

where D is Levi-Civita connection , Σ = DJ and {ΣX , J} = 0, for all vector fields
X.

tensor field Σ of type (2, 1) has the properties as follows.

Σ(X,Y ) = −Σ(Y, x),(2.2)

Σ(X, JY ) = −JΣ(X,Y ),(2.3)

g(Σ(X,Y ), Z) = g(Σ(Y, Z), Z) = g(Σ(Z,X), Y ),(2.4)

let f : P −→ M be an orientable hypersurface of the nearly Kähler manifold
(M,J, g). If D̃ denote the Riemannian connection induced on P, then the Gauss
and Weingarten formulas are

D = D̃ + g(SX, Y )N, SX = −DXN,(2.5)

where X,Y ∈ TM and N ∈ T⊥M and S is the shape operator of the hypersurface
P.

Definition 2.2. A (2n−1)-dimensional smooth manifold M is said to be an almost
contact metric manifold if carries a global 1- form η, a vector field ξ , a (1, 1)-tensor
field Φ, and a Riemannain metric g satisfying

Φ2 = −Id+ η ⊗ ξ, η(ξ) = 1, g(ΦX,ΦY ) = g(X,Y )− η(X)η(Y ).(2.6)

On the other hand Φ(ξ) = 0, ηoΦ = 0, g(X, ξ) = η(X), and ξ is a unit vector field.
The almost contact metric structure (η, ξ,Φ, g) on M is called a contact metric
structure if dη(X,Y ) = g(X,ΦY ).

On orientable hypersurface f : P −→ M of the nearly Kähler manifold M we
can define 3 tensor field as follow:

Φ1X = JX − η(X)N, Φ2X =
√
3Σ(X,N), Φ3X =

√
3Σ(X, ξ),(2.7)

where N is unit vector field normal to the hypersurface along f and ξ = −JN .

Proposition 2.3. On orientable hypersurface f : P −→ M of the nearly Kähler
manifold M if η is the smooth 1-form dual to ξ then above tensor fields (ξ, η,Φi)
for i = 1, 2, 3 are almost contact metric structures on P and defined a quaternion
fields.

At now we try to find the covariant derivatives of the structure tensor fields
of the almost contact metric structures on the hypersurface P. with use fact that
∇J = 0 we have J∇xN = ∇XJN and

DXJN − 1/2JΣ(X,JN) = J(DXN − 1/2JΣ(X,N)),

therefore

−DXξ − 1/2Σ(X,N) = −JSX + 1/2Σ(X,N),
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and

DXξ = JSX − Σ(X,N) = Φ1(SX) + η(SX)N −
√
3

3
Φ2.

Tangent part of above relation is D̃Xξ = Φ1(SX) −
√
3
3 Φ2. with use again of

∇J = 0 and Gauss- Weingarten formulas

∇XJY = DXJY − 1/2JΣ(X, JY ) = DX(Φ1Y ) +Xη(Y )N + η(Y )DXN − 1/2Σ(X,Y ),

J∇XY = J(DXY − 1/2JΣ(X,Y )) = J(D̃XY + g(SX, Y )N) + 1/2Σ(X,Y ),

therefore

DX(Φ1Y ) +Xη(Y )N − 1/2Σ(X,Y )− η(Y )SX = DX(Φ1Y ) +Xη(Y )N − 1/2Σ(X,Y )

= Φ1(D̃XY ) + η(D̃X)N − g(SX, Y )ξ + 1/2Σ(X,Y ),

tangent part of this relation

(D̃XΦ1)Y = η(Y )SX − g(SX, Y )ξ +Σ(X,Y )T .

Denote by ωi the fundamental 2-form on P given by ωi(X,Y ) = g(ΦiX,Y ), for
i=1,2,3.

Proposition 2.4. The fundamental 2-form ω on a real hypersurface in a strictly
Kähler manifold is not closed.

Proof.

dω1(X,Y, Z) = X(ω1(Y,Z)) + Y (ω1(Z,X)) + Z(ω1(Y, Z))

= g̃((D̃XΦ1)Y, Z) + g̃((D̃XΦ1)Y, Z) + g̃((D̃XΦ1)Y,Z)

= σX,Y,Z{η(Y )g(SX,Z)− g(SX, Y )η(Z) + g(Σ(X,Y ), Z)}
= g(Σ(X,Y ), Z) + g(Σ(Y, Z), X) + g(Σ(Z,X), Y )

= 3g(Σ(X,Y ), Z).

�

Motivated by the example S2n−1 ∈ Cn Okumura in [6] called that P is a contact
hypersurface of M if there exists an everywhere nonzero smooth function ρ on P
such that dη = 2ρω holds on P along f. It is clear that if this equation holds, then
then the rank of Φ being 2n− 2 and we have η ∧Φn−1 = ρ−nη ∧ (dη)n−1 ̸= 0, that
is, every contact hypersurface of a Nearly Kähler manifold is a contact manifold.

Theorem 2.5. let f : P −→ M be a real hypersurface of nearly Kähler manifolds
M . then P is contact hypersurface under contact structure Phi1 if there exist a
non-where zero function ρ on P along f such that

SΦ1 +Φ1S = 2ρΦ1 + 2

√
3

3
Φ2.

Proof.

dη(X,Y ) = dη(Y )X − dη(X)Y − η([X,Y ]) = g(Y,∇Xϕ)− g(X,∇Y ϕ)

= g(Y,Φ1SX −
√
3

3
Φ2X)− g(X,Φ1SY −

√
3

3
Φ2Y )

= g(Y,Φ1SX) + g(Y, SΦ1X)− 2

√
3

3
g(Y,Φ2X),
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from dη(X,Y ) = 2ρω1(X,Y ) = 2ρg(Φ1X,Y ) we have the result. �
Corollary 2.6. let f : P −→ M be a real contact hypersurface of nearly Kähler
manifolds M under contact structure Φ1. then P can note be totally geodesic or
totally umbilic submanifolds of M

Proof. from above theorem and relation SΦ1+Φ1S = 2ρΦ1+2
√
3
3 Φ2 if P is totally

geodesic or totally umbilic then Φ1 and Φ2 must be linear dependent this means
that there exist function Λ such that Φ1 = λΦ2.

−I + η ⊗ ξ = Φ1(Φ1) = λΦ1(Φ2) = λΦ3,

with chose a tangent vector X such that Phi3X ̸= 0 we have

−x+ η(X)ξ = Φ3(X).

But in not possible because (η, ξ,Φ3) is an almost contact structure and

g(Φ3X,x) = g(Φ3X, ξ) = 0,

and its contraction with chose of X. �
Corollary 2.7. let f : P −→ Mn be a real contact hypersurface of nearly Kähler
manifolds M under contact structure Φ1. if X be a principle direction of hyper-
surface then Φ1X can not be a principle direction. therefore the maximal principle

curvature of P is
n+ 1

2
.

Remark 2.8. In theorem 2.5 if M is Kähler manifolds and P is totally umbilic
hypersurface in M such that the mean curvature of hypersurface in non-zero then
P is contact hypersurface ( in this case Φ2 = Φ3 = 0). therefore under contact
structure Φ1 induced form complex plane Cn every odd dimensional sphere is contact
hypersurface. but in nearly Käher case S5 under contact structure Φ1 induced form
S6 (as totally geodesic hypersurface ) is not contact hypersurface.
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A KAKEYA PROBLEM ON RIEMANNIAN MANIFOLDS OF

NONPOSITIVE CURVATURE

REZA MIRZAIE AND OMID REZAIE

Abstract. We generalize the definition of Kakeya set to Hadamard manifolds
and we find a Kakeya set in hyperbolic space.

Key words and phrases: Fractal; Hyperbolic space; Kakeya problem.

1. Introduction

The Kakeya needle problem posed by S. Kakeya in 1917 asks whether there
is a minimum area region (called Kakeya set), in the plane, in which a needle of
length one can be turned through 360 degree continuously, and return to its initial
position. Pal [7], showed that the solution of Kakeya‘s problem for convex sets is the
equilateral triangle of height one. For the general case, when the Kakeya set is not
necessarily convex or even simply connected, the answer was surprising. Besicovitch
gave the answer that one could rotate a needle using an arbitrary small area. The
Kakeya problem, can be mentioned a little more different such that the needle
(line segment) can be replaced by line. So the problem is to find a planar domain
with the smallest area so that a line segment can be rotated by 180 degrees in this
domain. It is shown by A. S. Besicovitch [1], that for n ≥ 2 there are subsets of Rn

of measure zero which contain a line segment in each direction. Such sets are called
Besicovitch sets or Kakeya sets. The Kakeya conjecture is that Kakeya sets in Rn

must have Hausdorff dimension at least n. It is already proved for n = 2 but is still
open in higher dimensions. The original construction of Kakeya set by Besicovitch
has been simplified by other mathematicians (see [3, 4, 6]). Recently, the problem
has received considerable attention due to its many applications. There are strong
connections between Kakeya-type problems and problems in number theory [2],
geometric combinatorics [9], arithmetic combinatorics, oscillatory integrals, and the
analysis of wave equations [8]. Two main problems related to the original Kakeya
are: First, trying to solve the Kakeya conjecture and the second one is to consider
similar problem in more general cases and study the existence of Kakeya sets. We
consider in this note the second problem. We can mention many problems similar
to the Kakeya set problems. For example, in a similar problem it is shown that
there are thin sets of circles sets of measure zero which contain circles of every
radius. Instead of a plane, we can consider an sphere and the rotation takes place
on the surface of the unit sphere and arc of great circle plays the role of the line.
It is known that for arcs of length small compared to the radius of the sphere the
answer is similar to the original Kakeya problem. A more general case is to replace
the plane by a two dimensional Riemannian manifold in which the geodesics play
the role of lines. Since direction of the geodesics is not meaningful in general case, it
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is necessary to give a new definition of the Kakeya set which generalizes the original
definition on the plan sets. We give in the present article a definition for Kakeya set
on Hadamard manifold which is a generalization of its original definition. Then, we
find a Kakeya set in two dimensional hyperbolic space which is the most important
model of a Hadamard manifold.

2. Main results

A point b in infinity of R2 is by definition the collection of all lines in R2 parallel
to a line L and it is said that L passes from b. So, as Besicovitch’s result, there
is a Kakeya set K in R2 such that for each point b at infinity, there is a line in K
passing from b. Thus, the following definition 2.1, of the Kakeya set in Hadamard
manifolds is a generalization of the original definition of the Kakeya set. First we
recall some preliminary facts and definitions about Hadamard manifolds (see [5]
for details). Let M be a simply connected Riemannian manifold of nonpositive
curvature, which is called a Hadamard manifold. Two unit speed geodesics γ and
β in M is said to be asymptotic if there exists a positive number c such that for all
t ≥ 0, one of the following is true

d(γ(t), β(t)) < c or d(γ(t), β(−t)) < c.

Asymptotic relation is an equivalence relation on all geodesics of M . The asymp-
totic class of a geodesic γ is denoted by [γ]. The collection of all asymptotic classes
is called the infinity of M denoted by M(∞). So each point b in M(∞) has inter-
pretation as a class of asymptotic geodesics. If b = [γ] then we say that γ passes
from b.
For example, if M = Rn then the geodesics are straight lines and asymptotic lines
are parallel. Thus a point at infinity corresponds to all lines parallel to a fixed line.
If M is the hyperbolic space, which we denote it by H, there are several important
models of H: the Klein model, the hyperboloid model, the Poincar ball model, the
Poincar half space model, and the Belterami model. We use here the Belterami
model. In the Belterami model, H is the points of the open disc:

H = {(x, y) ∈ R2 : x2 + y2 < 1}.
the metric tensor is given by

ds2 =
dx2 + dy2

1− (x2 + y2)
+

(xdx+ ydy)2

(1− (x2 + y2))2
.(2.1)

Geodesics are represented by the chords, straight line segments with ideal endpoints
on the boundary sphere. The infinity of H, H(∞) is interpreted as the points of
the boundary sphere.

Definition 2.1. A measurable subset K of a Hadamard manifold M is called a
Kakeya set if its measure is zero and it contains a collection of geodesics with the
property that for each point b ∈ M(∞) there exists a geodesic in K passing from b.

Theorem 2.2. There is a Kakeya set in H.

Proof. We consider the Belterami model ofH. By Besicovitch answer to the original
Kakeya problem on R2, one could rotate a needle using an arbitrary small area.
So, We can consider a line segment L inside H, and rotate it continuously inside H
with the property that the union of the all line segments achieved from rotations
of L is contained in a set of R2-measure zero. Denote by Γ = {λ :} the set of the
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mentioned line segments. Each line segment λ in Γ is a portion of a chord which
we denote it by λ′. Put Γ′ = {λ′ : λ ∈ Γ}. Since the union of the points of all line
segments λ in Γ is contained in a set of R2-measure zero, it is not hard to show that
the union of the points of the members of Γ′ has also R2-measure zero, and from
the fact that the members of Γ′ are rotations of a line segment in all directions, then
the union of the endpoints of the members of Γ′ covers all points in the boundary
of H, that is H(∞). The members of Γ′ are in fact geodesics of H. So we have a
Kakeya set in H if we show that the union of the members of Γ′ is contained in a
set of H-measure zero.
For a measurable subset W of H denote by µ

E
(W ) and µ

H
(W ) the R2-measure

and H-measure of W . We show that µ
E
(W ) = 0 implies µ

H
(W ) = 0. Consider the

following subsets of H.

Bn = {(x, y) ∈ R2 : x2 + y2 < 1− 1

n
}.

Then,

µH (W ) =

∫ ∫
W

√
detAdxdy,(2.2)

where A is the following matrix

A = [aij ], aij = ⟨ei, ej⟩H , e1 = (1, 0), e2 = (0, 1).

By using of the metric tensor of H given by (2.1) we can compute

a11 =
1

1− (x2 + y2)
+

x2

(1− (x2 + y2))2
,

a12 = a21 =
(x+ y)2

(1− (x2 + y2))2
,

a22 =
1

1− (x2 + y2)
+

y2

(1− (x2 + y2))2
.

Put Wn = W
∩
Bn. Since Wn ⊂ Bn then for all (x, y) ∈ Wn, x

2 + y2 <
1

n
, so

a11 < (1 + nx2)n < (1 + n)n,

a22 < (1 + ny2)n < (1 + n)n,

a12 = a21 < (x+ y)2n2 < 4n2.

Then det(A) ≤ 16n6(1 + n)2, so by (2.2),

µH(Wn) ≤
∫ ∫

Wn

√
16n6(1 + n)2dxdy = 4n3(1 + n)µ

E
(Wn).(2.3)

Since µE (Wn) ≤ µE (W ) = 0, then by (2.3), µH (Wn) = 0. Now, we get from

W =
∪

n
Wn that µH (W ) = 0. �

It seems that the assertions are true in general for Riemannian manifolds of
nonpositive curvature. Thus, the following problem is interesting to think about.

Problem : Show that there is a Kakeya set in each Riemannian Manifold of
nonpositive curvature.
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ANTI-KÄHLER GEOMETRY ON COMPLEX LIE GROUPS

PARVANEH SADEGNAVEHSI

Abstract. Let G be a Lie group of even dimension and let (g, J) be a left
invariant anti-Kähler structure on G. In this dissertation we study anti-Kähler
structures considering the distinguished cases where the complex structure J

is abelian or bi-invariant. We find that if G admits a left invariant anti-Kähler
structure (g, J) where J is abelian then the Lie algebra of G is unimodular
and (G, g) is a flat pseudo-Riemannian manifold. For the second case, we see
that for any left invariant metric g for which J is an anti-isometry we obtain

that the triple (G, g, J) is an anti-Kähler manifold.
Key words and phrases: Anti-Hermitian geometry; Norden metrics; Anti-

Kähler manifold; Lie groups.

1. Introduction

Anti-Hermitian geometry can be considered as a counterpart of Hermitian ge-
ometry: an almost anti-Hermitian manifold is a triple (M, g, J), where (M, g) is a
pseudo- Riemannian manifold and J is an almost complex structure on M such that
J is symmetric for g. In the literature, other names are also used for this class of
manifolds: Norden Manifolds [1] or almost complex manifolds with a Norden metric
[2], in honour to the Russian mathematician Aleksandr P. Norden. This work is in-
tended as an attempt to study anti-Kähler geometry on Lie groups and to motivate
new properties of anti-Kähler manifolds. In this paper, we focus on anti-Kähler
structures on Lie groups in the left invariant setting. In the complex geometry
of Lie groups, we have two distinguished classes of left invariant complex struc-
tures, namely, abelian and bi-invariant complex structures.We study anti-Kahler
structures with complex structures in each class.

Definition 1.1. (Almost anti-Hermitian Manifold) An almost anti-Hermitian man-
ifold is a triple (M, g, J), where M is a differentiable manifold of real dimension
2n, J is an almost complex structure on M and g is an anti-Hermitian metric on
(M,J), that is

(1.1) g(JX, JY ) = −g(X,Y ), ∀X,Y ∈ X(M),

or equivalently, J is symmetric with respect to g.

If additionally J is integrable, then the triple (M, g, J) is called an anti-Hermitian
manifold or complex Norden manifold.

Definition 1.2. An Anti-Kähler manifold is an almost anti- Hermitian manifold
(M, g, J) such that J is parallel with respect to the Levi-Civita connection of the
pseudo-Riemannian manifold (M, g).

2010 Mathematics Subject Classification. 22F30 , 22F50.
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Let (M, g, J) be an almost anti-Hermitian manifold. From now on, let us denote
by ∇ the Levi-Civita connection of (M, g) and we denote by (∇xJ) the covariant
derivative of J in the direction of the vector field X. We recall that

(∇xJ)Y = ∇xJY − J∇xY.

Proposition 1.3 ([3]). Let (M, g, J) be an almost anti-Hermitian manifold. Then,
(M, g, J) is an anti-Kähler manifold if and only if

(∇JXJ)Y = εJ(∇XJ)Y, ∀X,Y ∈ X(M),(1.2)

where ε is a real constant.

2. Left invariant geometric structures on Lie groups

Definition 2.1. A left invariant almost complex structure J on a Lie group G is
called abelian when it satisfies

[JX, JY ] = [X,Y ], ∀X,Y ∈ g.(2.1)

Definition 2.2. A left invariant almost complex structure J on a Lie group is
called bi-invariant if it satisfies

[JX, Y ] = J [X,Y ](= [X,JY ]), ∀X,Y ∈ g.(2.2)

Proposition 2.3. Let (g, J) be a left invariant anti-Kähler structure on a Lie group
G such that J is an abelian complex structure. Then (G, g, J) satisfies the condition
(2.1), i.e.

∇JXY = −J∇XY, ∀X,Y ∈ g.(2.3)

3. Anti-Kähler geometry on complex Lie groups

Proposition 3.1. Let (g, J) be a left invariant almost anti-Hermitian structure on
a anti-Kähler Lie group G where J is a bi-invariant complex structure on G. Then
(G, g, J) is an manifold.

4. Anti-Kähler geometry and abelian complex structures

Theorem 4.1. Let (g, J) be a left invariant anti-Kähler structure on a Lie group
G such that J is an abelian complex structure. Then (G, g) is a flat pseudo-
Riemannian Lie group.

Proof. It is sufficient to prove that R(X,Y )Z = 0 for all X,Y, Z in g. By the above
proposition, we have R(X,Y )Z = ∇[X,Y ]Z and therefore

R(JX, JY )Z = ∇[JX, JY ]Z = R(X,Y )Z.

While on the other hand, by virtue of the symmetry by pairs of the Riemannian
curvature tensor of (G, g) and (∇J) ≡ 0, R(JX, JY )Z = −R(X,Y )Z and the proof
is completed. �

Corollary 4.2. Let (g, J) be a left invariant anti-Kähler structure on a Lie group
G such that J is an abelian complex structure, then for all X,Y, Z in g

[J [X,Y ], Z] = J [[X,Y ], Z].(4.1)
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Proof.

[J [X,Y ], Z] = ∇J[X,Y ]Z −∇ZJ [X,Y ]

=
1

2

(
[J [X,Y ], Z]− J [J [X,Y ], JZ]

)
+

1

2

(
[Z, J [X,Y ]]− J [Z, J2[X,Y ]]

)
=

1

2

(
[J [X,Y ], Z]− 1

2
J [[X,Y ], Z]

)
+

1

2

(
[Z, J [X,Y ]] +

1

2
J [Z, [X,Y ]]

)
=

1

2
× 2J

[
[X,Y ], Z

]
= J

[
[X,Y ], Z

]
.

�
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KILLING VECTOR FIELDS ON PSEUDO-RIEMANNIAN

MANIFOLDS

REZA MIRZAIE

Abstract. We show that the existence of a sufficient number of Killing vector

fields on a compact and connected pseudo-Riemannian manifold yields to the
geodesic completeness of the manifold. We prove that in a compact pseudo-
Riemannian manifold Mn

ν with positive timelike curvature and ν < n
2
, each

timelike killing vector field vanishes at a point.

Key words and phrases: Pseudo-Riemannian manifold; Killing vector field.

1. Introduction

A smooth vector field X on a pseudo-Riemannian manifold M is said to be a
Killing vector field if its flow consists of isometries. The existence of a nontrivial
Killing vector field on M restricts its topology and geometry. An interesting prob-
lem which leads to the study of Killing vector fields is Poincare conjecture stating
that an arbitrary compact connected simply connected metrizable topological 3-
manifold M with the second countability axiom is homeomorphic to the 3-sphere
S3. It is proved that the Poincare conjecture is true if and only if every com-
pact connected simply connected three-dimensional smooth manifold M admits a
smooth Riemannian metric with a regular Killing vector field of constant length
[3]. Motivated from many geometric subjects such Poincare conjecture and many
other problems in geometry and physics, study of the Killing vector fields has been
one of the active research areas in differential geometry. One can find many inter-
esting results about Killing vector fields on Riemannian manifolds in the literature.
In the pseudo-Riemannian manifolds beside the problems which have Riemannian
corresponds, many new problems arise. In fact, the causal character of the Killing
vector fields play important roles. For example, a compact Riemannian manifold is
(geodesically) complete. But, contrary to the Riemannian case, a compact pseudo-
Riemannian manifold may be geodesically incomplete. This striking fact motivated
the search of sufficient assumptions under which compactness implies (geodesically)
completeness of such a manifolds. Kamishima proved that a compact Lorentzian
manifold which admits a timelike Killing vector field and has constant sectional
curvature must be complete [9]. In a similar work, Romero and Sanchez general-
ized the theorem and proved that a compact Lorentzian manifold which admits a
timelike Killing vector field must be complete [14] ( in fact they proved the theorem
in a more general case where the vector field is conformal). In the present article,
we prove a similar result for pseudo-Riemannian manifolds with arbitrary index.
Also, we consider the isolated fixed points of the isometries, which their infinites-
imal version is the points where a Killing vector field vanishes. Motivated from
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the similar results in Lorentzian manifolds (see [2]), we show that in odd dimen-
sional pseudo-Riemannian manifolds, a Killing vector field has no isolated vanishing
point and if the dimension is even, in any neighborhood of an isolated zero of an
arbitrary Killing field, the field must become spacelike, null and timelike. It is
proved by Bochner [7] that in the compact Riemannian manifolds if the manifold
has negative sectional curvature, then there is no non-trivial Killing vector field.
The pseudo-Riemannian correspond to the negative curvature in the Riemannian
manifolds is positive timelike curvature in the pseudo-Riemannian manifolds. As a
result similar to Bochner’s theorem, we show that in a compact pseudo-Riemannian
manifold with positive timelike curvature, each Killing vector field vanishes at some
point.

2. Main results

Fix throughout this article a (connected) pseudo-Riemannian manifold (Mn
ν , g)

and its Levi-Civita connection ∇. A vector field on M is called a Killing vector
field if for all vector fields Y and Z, g(∇XY, Z)+g(∇ZX,Y ) = 0. It is proved in [2]
that if a Killing vector field X on a Lorentzian manifold Mn

1 has an isolated zero
at a point p. Then, n is even and in each neighborhood of p there are points at
which X is timelike, spacelike and null. We show (in Theorem 2.4) that a similar
result is true in general for pseudo-Riemannian manifolds ( the ideas of [2] works).

Remark 2.1. Consider the signature matrix of Rn
ν , ϵ, the diagonal matrix whose

diagonal entries are ϵ11 = · · · = ϵνν = −1 and ϵ(ν+1)(ν+1) = · · · = ϵnn = 1. Each
Killing vector field X on Rn

υ is in the form a + S∗ where, S is a skew adjoint
operator on Rn

υ (X(p) = ap + S(p)) (see [12] p 253). If X(p) = 0 for some point
p, then a = 0 and X(p) = S(p) for all p ∈ Rn

υ . S is skew adjoint and its matrix
in the standard basis of Rn

ν obeys the equality tS = −ϵSϵ (see [12] page 235 Lemma
3). Thus, detS = (−1)ndetS(detϵ). Then detS = (−1)ndetS, which implies that
for odd numbers n, S is singular and we have zero eigenvalues. Thus, there is a
line L such that X(q) = 0 for all q ∈ L.

If in Remark 2.1, n is even, we have the following argument.

Remark 2.2. Suppose that X(p) = 0 and let A be a non-degenerate (affine) sub-
space of Rn

ν containing p and dimA = n− 1. Put Y = tanAX, where tanA denotes
the normal projection map on A. Y is a killing vector field along A. Since n − 1
is odd then by the above remark, there is a line L on A passing from p such that
Y is zero along L. Then X is normal to A along L. Let W be the unite normal
vector field on A. Parametrize L as a geodesic γ(s), s ∈ I. We have along L,
X = f(s)W , where f is a differentiable function on I. Since X is a Jaccobi field
along γ, then X ′′ = RXγ′γ′. Thus f ′′(s)W = f(s)Rwγ′γ′. Since the curvature is
zero then g(RWγ′γ′,W ) = 0. Thus f ′′(s) = 0 and along L, X = csW for a constant
number c.

We get from the above remarks the following theorem.

Theorem 2.3. Let X be a killing vector field on Rn
υ and X(p) = 0 for some point

p.
(1) If n is odd, then X is zero along a line L passing from p.
(2) If n is even, then for all affine subspaces S containing p, X is normal to S
along a line contained in S and passing from p.
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Theorem 2.4. If p is an isolated zero point of the Killing vector field X on a con-
nected pseudo-Riemannian manifold Mn

ν , then n is even and in each neighborhood
of p there are points where X becomes timelike, spacelike and null.

Proof. Without lose of generality, we can assume that M = Rn
ν (for each point

p ∈ M use the exponential map exp : TpM → M to move the problem from M to
TpM which is equivalent to Rn

ν ). By the above theorem (part 1), it is clear that n
must be even. In part 2 of the above theorem, choose S an affine non-degenerate
subspace with index v − 1. Then, the vector field W must be timelike and X will
be timelike along a line in S containing p. If we choose S with the index ν, then
W will be spacelike and similarly, by suitable choose of S, X will be null along a
line containing p. �
Theorem 2.5. If Mn

ν is a compact pseudo-Riemannian manifold with ν linearly
independent timelike killing vector fields, then M is geodesically complete.

Proof. We prove the theorem in the following two steps.
Step 1. LetK1, . . . ,Kν be linearly independent timelike vectors in Rn

ν and c1, . . . , cν
be constant numbers. Let Ω = {v ∈ Rn

ν :< v, v >= −1, < v,Ki >= ci, 1 ≤ i ≤ ν}.
Consider the linear subspace S of Rn

ν generated by K1, . . . ,Kν and let e1, . . . , eν be
an orthonormal basis for S. Then, for some constant numbers aij , ei =

∑
j aijKj .

Consequently, < v, ei >=
∑

j aijcj . Thus, < v, ei > is constant which we denote it

by di. Consider an orthonormal basis {eν+1, . . . , en} for S⊥. Then {e1, . . . , en} is
an orthonormal basis for Rn

ν (e1, . . . , eν timelike, eν+1, . . . , en spacelike).
If v =

∑
i viei ∈ Ω , then

Ω = {v = (d1, . . . , dν , vν+1, . . . , vn) :
n∑

i=ν+1

v2i = −1 +
ν∑

i=1

d2i }.

−1+
∑ν

i=1 d
2
i is a (positive) constant number which we denote it by c. This means

that Ω is homeomorphic to the standard sphere {(vν+1, . . . , vn) :
∑n

i=ν+1 v
2
i = c}

of Rn−ν . Therefore, Ω is compact.
Step 2. Let c1, . . . , cν be constant numbers and put

Ωp = {v ∈ TpM : < v, v >= −1, < v,Ki >= ci}.
By Step 1, Ωp is a compact subset of TpM .
Let γ : I → M be a unite speed timelike geodesic in M . Since Ki is Killing vector
field, < Ki, γ

′(t) > is constant along γ which we denote it by ci. Put Ω̄ =
∪

p∈M Ωp.

Since M is compact, then Ω̄ is compact. We have {(γ(t), γ′(t)) : t ∈ I} ⊂ Ω̄.
Therefore, γ is complete. A similar proof works if γ is spacelike or null. �
Theorem 2.6. If Mn

ν is a compact pseudo-Riemannian manifold with positive
timelike curvature and ν < n

2 , then each timelike Killing vector field must be zero
at least in one point of M .

Proof. Let X be a Killing vector field on M which is nonzero at all points of M .
We will get a contradiction as follows:
Put f : M → R, f(x) =< X(x), X(x) >. Since M is compact, f has a maximum
point p. Since p is a critical point of f , then for all v ∈ TpM , v[f ] = 0 which implies
< ∇vX,X >= 0. Thus v ∈ X(p)⊥. We need the following claim.
Claim: There is a spacelike vector v ∈ X(p)⊥ such that ∇vX is nonspaclike at p.
Proof of the claim: Suppose that for all v ∈ TpM , ∇vX is timelike. Without lose
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of generality we can suppose that TpM = Rn
ν and X ∈ Rν

ν .
Put S : TpM(= Rn−ν) → Rν , S(v) = ∇vX. We have dim(kerS) ≥ (n−ν)−ν > 0.
Then, there is a non-zero spacelike vector v such that v ∈ ker(S) and ∇vX = 0.
Now, consider the following computations

∇v∇vf = 2∇v < ∇vX,X >= 2 < ∇v∇vX,X > +2 < ∇vX,∇vX > .(2.1)

Since X is Killing, then

< ∇v∇vX = R(v,X)v.(2.2)

So, we get from (2.1) and (2.2) that

∇v∇vf = 2 < R(v,X)v, v > +2 < ∇vX,∇vX >

= −κ(v,X)(< v, v >< X,X >) + 2 < ∇vX,∇vX > .(2.3)

By the above claim, there is a spacelike vector v orthogonal to X at p such that
< ∇vX,∇vX > is nonnegative. Thus, by our assumption on the curvature, (2.3)
yields to ∇v∇vf > 0. Let α be a geodesic with initial velocity v, then

∇v∇vf =
d

dt
(f ◦ α(t))|t=0.

This means that f has local minimum at p, which is in contrast with the assumption
that p is a maximum point for f . �
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GENERALIZED η-RICCI SOLITONS ON KENMOTSU

MANIFOLDS ASSOCIATED TO THE QUARTER SYMMETRIC

NON-METRIC ϕ-CONNECTION

SHAHROUD AZAMI AND SAKINEH HAJIAGHASI

Abstract. In this paper, we investigate Kenmotsu manifolds admitting gen-
eralized η-Ricci solitons associated to the quarter symmetric non-metric ϕ-

connection. We provide two examples of generalized η-Ricci solitons on a
Kenmotsu manifolds to prove our results.

Key words and phrases: Kenmotsu manifolds; generalized η-Ricci soliton;
quarter symmetric non-metric ϕ-connection.

1. Introduction

The Kenmotsu manifold was introduced by Kenmotsu [8] in 1972 as a new class
of almost contact metric manifolds. Kenmotsu manifolds are very closely related to
the warped product manifolds. In dimensional three, Kenmotsu manifold is locally
modeled on the product of a circle and a hyperbolic plane. The Kenmotsu mani-
fold is characterized by its contact structure, which is a special type of geometric
structure that arises in the study of certain physical systems.

In 1982, Hamilton [7] introduced the notion of Ricci soliton as a generalization
of Einstein metrics and a special solution to Ricci flow on a Riemannian manifold.
A Ricci soliton [6] is a triplet (g, V, λ) on a pseudo-Riemannian manifold M such
that LV g+ 2S + 2λg = 0, where LV is the Lie derivative in direction the potential
vector field V , S is the Ricci tensor, and λ is a real constant.

Motivated by the above studies M. D. Siddiqi [10] introduced the notion of
generalized η-Ricci soliton as follows

(1.1) LV g + 2µV ♭ ⊗ V ♭ + 2S + 2λg + 2ρη ⊗ η = 0.

Motivated by [2, 3, 9] and the above works, we study generalized η-Ricci solitons
on Kenmotsu manifolds associated the quarter symmetric non-metric ϕ-connection.
We give an example of generalized η-Ricci soliton on a Kenmotsu manifold associ-
ated the quarter symmetric non-metric ϕ-connection.

2. Preliminaries

A n-dimensional metric manifold (M, g) is said to be a almost contact manifold
[1], with an almost contact structure (ϕ, ξ, η, g), if there exist a (1, 1)-tensor field
ϕ, a vector field ξ and a 1-form η such that

ϕ2(X) = −X + η(X)ξ, η(ξ) = 1,(2.1)

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),(2.2)
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for all vector fields X,Y on M . In this case, we have ϕξ = 0, η ◦ ϕ = 0, and
η(X) = g(X, ξ). A almost contact manifold M is called Kenmotsu manifold [5], if

(∇Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX,(2.3)

for all vector fields X,Y on M . In a Kenmotsu manifold, we have

∇Xξ = X − η(X)ξ,(2.4)

(∇Xη)Y = g(X,Y )− η(X)η(Y ),(2.5)

where ∇ is the Levi-Civita connection with respect to the metric g. Using (2.4)
and (2.5), we find

R(X,Y )ξ = η(X)Y − η(Y )X, R(X, ξ)Y = g(X,Y )ξ − η(Y )X,

for all vector fields X,Y, Z, where R is the Riemannian curvature tensor. The Ricci
tensor S of a Kenmotsu manifold M is defined by S(X,Y ) =

∑n
i=1 g(R(ei, X)Y, ei)

and we have S(X, ξ) = −(n− 1)η(X), for all vector field X on M .
Let M be a Kenmotsu manifold and ∇ be the Levi-Civita connection on M .

Then a quarter symmetric non-metric ϕ-connection ∇̄ [4, 5] on M with respect to
Levi-Civita connection ∇ is defined by

(2.6) ∇̄XY = ∇XY − η(X)ϕY + g(X,Y )ξ − η(Y )X − η(X)Y,

for all vector fields X,Y on M . Let R̄ and S̄ be the curvature tensors and the Ricci
tensors of the connection ∇̄, respectively, that is

R̄(X,Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z, S̄(X,Y ) =
n∑

i=1

g(R̄(ei, X)Y, ei).

On Kenmotsu manifolds, applying (2.6) and the above relation we find

(2.7) R̄(X,Y )Z = R(X,Y )Z+ g(Y, Z)X − g(X,Z)Y + η(Y )η(Z)X − η(X)η(Z)Y,

and

(2.8) S̄(X,Y ) = S(X,Y ) + (n− 1)g(X,Y ) + (n− 1)η(X)η(Y ),

for all vector fieldsX,Y, Z onM , where S denotes the Ricci tensor of the connection
∇. Let r and r̄ be the scalar curvature of the Levi-Civita connection ∇ and the
quarter symmetic non-metric ϕ-connection ∇̄. The equation (2.8) implies that

(2.9) r̄ = r + n2 − 1.

The generalized η-Ricci soliton associated to the quarter symmetric non-metric
ϕ-connection is defined by

(2.10) αS̄ +
β

2
LV g + µV ♭ ⊗ V ♭ + ρη ⊗ η + λg = 0,

where S̄ denotes the Ricci tensor of the connection ∇̄,
(LV g)(Y,Z) := g(∇̃Y V, Z) + g(Y, ∇̃ZV ), V ♭ is the canonical 1-form associated to
V that is V ♭(X) = g(V,X) for all vector field X, λ is a smooth function on M , and
α, β, µ, ρ are real constant such that (α, β, µ) ̸= (0, 0, 0). Note that

(LV g)(X,Y ) = LV g(X,Y )− 2η(V )g(X,Y )− g(X,ϕV )η(Y )− g(Y, ϕV )η(X).
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3. Main results

A Kenmotsu manifold is said to η-Einstein with respect to the quarter symmetric
non-metric ϕ-connection if its Ricci tensor S̄ is of the form S̄ = ag+bη⊗η, where a
and b are smooth functions on manifold. Let M be a Kenmotsu manifold. Now, we
consider M satisfies the generalized η-Ricci soliton (2.10) associated to the quarter
symmetric non-metric ϕ-connection and the potential vector field V is a pointwise
collinear vector field with the structure vector field ξ, that is, V = fξ for some
function f on M . Using (2.6) we get

Lfξg(X,Y ) = (Xf)η(Y ) + (Y f)η(X)− 2fη(X)η(Y )),

for all vector fields X,Y on M . Also, we have

(3.1) αS̄(X,Y ) = −λg(X,Y ) + ((n− 1)α+ λ)η(X)η(Y ),

which implies αr̄ = λ(1 − n) + (n − 1)α. Therefore, this leads to the following
theorem.

Theorem 3.1. Let (M, g, ϕ, ξ, η) be a Kenmotsu manifold. If M admits a gener-
alized η-Ricci soliton (g, V, α, β, µ, ρ, λ) with respect to the quarter symmetric non-
metric ϕ-connection such that α ̸= 0 and V = fξ for some smooth function f on M ,
then M is an η-Einstein manifold with respect to the quarter symmetric non-metric
ϕ-connection.

Now, let M be an η-Einstein Kenmotsu manifold with respect to the quarter
symmetric non-metric ϕ-connection and V = ξ. Then we get S̄ = ag + bη ⊗ η for
some functions a and b on M . Hence, we can state the following theorem.

Theorem 3.2. Suppose that M is a η-Einstein Kenmotsu manifold with respect
to the quarter symmetric non-metric ϕ-connection such that S̄ = ag + bη ⊗ η for
some function a and constant b on M . Then manifold M satisfies a generalized
η-Ricci soliton (g, ξ, α, β, µ,−bα−µ+β,−aα) with respect to the quarter symmetric
non-metric ϕ-connection.

Now assume that a Kenmotsu manifold with respect to the quarter symmetric
non-metric ϕ-connection satisfying the condition R̄(X,Y ).S̄ = 0 (or S̄.R̄ = 0) for
all vector fields X,Y on M . Then from [4], we have S̄(X,Y ) = (n − 1)η(X)η(Y ).
Thus we have the following theorem.

Theorem 3.3. Let M be a Kenmotsu manifold with the quarter symmetric non-
metric ϕ-connection satisfy the condition R̄.S̄ = 0 or S̄.R̄ = 0. Then manifold M
satisfies a generalized η-Ricci soliton (g, ξ, α, β, µ,−(n−1)α−µ+β, 0) with respect
to the quarter symmetric non-metric ϕ-connection.

Definition 3.4. Let M be a Kenmotsu manifold with the quarter symmetric non-
metric ϕ-connection ∇̄. The projective curvature tensor P̄ with respect to the quar-
ter symmetric non-metric ϕ-connection on M is defined by

(3.2) P̄ (X,Y )Z = R̄(X,Y )Z − 1

n− 1

(
S̄(Y, Z)X − S̄(X,Z)Y

)
.

We have the following theorem.

Theorem 3.5. Let M be a ϕ-projectively flat ( or quasi-projectively flat or P̄ .S̄ = 0)
Kenmotsu manifold with respect to the quarter symmetric non-metric ϕ-connection.
Then manifold M satisfies a generalized η-Ricci soliton (g, ξ, α, β, µ,−(n − 1)α −
µ+ β, 0), with respect to the quarter symmetric non-metric ϕ-connection.
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Definition 3.6. A vector field V is said to a conformal Killing vector field if

(3.3) (LV g)(X,Y ) = 2hg(X,Y ),

for all vector fields X,Y , where h is some function on M .

Theorem 3.7. If the metric g of a Kenmotsu manifold satisfies the generalized
η-Ricci soliton (g, V, α, β, µ, ρ, λ) where V is and conformally Killing vector field
with respect to the quarter symmetric non-metric ϕ-connection, that is LV g = 2hg
then ((n− 1)α+ βh+ ρ+ λ)ξ + µη(V )V = 0.

Definition 3.8. A nonvanishing vector field V on pseudo-Riemannian manifold
(M, g) is called torse-forming [11], if

(3.4) ∇XV = fX + ω(X)V,

for all vector field X, where ∇ is the Levi-Civita connection of g, f is a smooth
function and ω is a 1-form.

Theorem 3.9. If the metric g of a Kenmotsu manifold satisfies the generalized
η-Ricci soliton (g, V, α, β, µ, ρ, λ) with respect to quarter symmetric non-metric ϕ-
connection where V is the torse-forming vector filed and satisfied in (3.4), then

λ = − 1

n

[
α(r + n2 − 1) + ρ+ βω(V ) +−nβη(V ) + µ|V |2

]
− βf.
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Abstract. We consider a condition on the weighted Ricci curvature involving

vector fields, under this condition we prove Laplacian comparison theorem on
the metric measure space Mn.

Key words and phrases: Ricci curvature; metric measure space.

1. Introduction

Let (M, g) be a complete n-dimensional Riemannian manifold and dµ := e−ϕdV
with ϕ a fixed smooth real-valued function on M . The triple (M, g, dµ) is called a
smooth metric measure space carries a natural analog of the Ricci curvature, the
so-called m-Bakry-Émery Ricci curvature, which is defined as follows:

Ricmϕ := Ric + Hessϕ− ∇ϕ⊗∇ϕ

m− n
, (n < m ≤ ∞).

In particular, when m = ∞, Ric∞ϕ := Ricϕ = Ric + Hessϕ is the classical Bakry-

Émery Ricci curvature introduced in [1]. There is also a natural analog of the
Laplacian, called the weighted Laplacian, denoted by ∆ϕ = ∆−∇ϕ.∇, which is a
self-adjoint operator in L2(M,dµ). A useful fact is that ∆ϕ relates to the Bakry-

Émery curvature via the following weighted Bochner formula, see [3, 4].

(1.1)
1

2
∆ϕ|∇u|2 = |∇2u|2 +∇u.∇∆ϕu+Ricϕ(∇u,∇u).

Laplacian comparison theorem was established in [5] under a Ricci curvature con-
dition that is modified as follows

Ric +
1

2
LV g −

1

N − n
V ⊗ V ≥ −λg,

where V is a vector field, n is the dimension of the manifold M , and N is a number
strictly greater than n.
The weighted Laplacian comparison theorem with m-Bakry-Émery curvature stud-
ied in [2]. After that Wei andWylie in [7] proved the weighted Laplacian comparison

theorem on a smooth metric measure space with bounded ∞-Bakry-Émery. They
also derived the weighted Myer’s Theorem when

Ricϕ ≥ (n− 1)K > 0.

Recently, authors in [6] studied Volume comparison and Laplacian comparison the-
orems considering a condition on the Ricci curvature involving vector fields. Their
basic assumption on the Ricci curvature tensor was as follows

(1.2) Ric +
1

2
LV g ≥ −λg.
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Here λ ≥ 0 is constant and V is a smooth vector field which satisfies the following
condition

(1.3) |V |(y) ≤ K

d(y,O)α
,

for any y ∈ M . Here d(y,O) represents the distance from a fixed base point O to
y, and K ≥ 0 and 0 ≤ α < 1 are constants. They proved the following Laplacian
comparison theorem.

Theorem 1.1. Assume that on a Riemannian manifold (M, g), (1.2) and (1.3)
hold. Let s = d(y, x) be the distance from any point y to some fixed point x, and
γ : [0, s] → M as a normal minimal geodesic with γ(0) = x and γ(s) = y. Then in
the distribution sense

∆s− n− 1

s
≤ λ

3
s+ < V,∇s > +

C(α)K

sα
.

Motivated by the above theorem, we want to study Laplacian comparison on a
metric measure space Mn involving the following Ricci curvature

Ricϕ +
1

2
LV g,

here Ricϕ = Ric + Hessϕ. We state our main result as follows

Theorem 1.2. Let (M, g, e−ϕdV ) be a smooth metric measure space. Assume that
the following conditions hold on M

Ricϕ +
1

2
LV g ≥ −λg, |V |(y) ≤ K

d(y,O)α
.

Here λ ≥ 0, K ≥ 0, and 0 ≤ α < 1 are constants; d(y,O) represents the distance
from O to y for any y ∈ M and fixed point O ∈ M . Consider γ : [0, s] → M as a
normal minimal geodesic joins x to y. Moreover consider the following condition
on function ϕ.

(1.4) |ϕ(y)− ϕ(z)| ≤ K1d(y, z)
α,

Then the following inequality holds in the sense of distribution

∆ϕs−
n− 1

s
≤ λ

3
s+ < V,∇s > +

C(α)K

sα
+

4K1

s1−α
.

Here C(α) denotes constant depends on α.

2. Proof of Main results

From weighted Bochner formula (1.1), for s = d(x, y), we have

0 = |∇2s|2+ < ∇∆ϕs,∇s > +Ricϕ(∇s,∇s).

Since |∇2s|2 ≥ (∆s)2

n− 1
, we obtain

∂

∂s
∆ϕs+

(∆s)2

n− 1
< −Ricϕ(∇s,∇s).
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So
1

s2
∂

∂s
(s2∆s) +

1

n− 1
(∆s− n− 1

s
)2

≤ n− 1

s2
− Ricϕ(∇s,∇s) +

∂

∂s
< ∇s,∇ϕ > .(2.1)

Multi-playing both sides of (2.1) by s2 and then integrating yields

∆s ≤ n− 1

s
− 1

s2

∫ s

0

t2Ricϕ(∇s,∇s) +
1

s2

∫ s

0

t2
∂

∂s
< ∇s,∇ϕ > .

Considering orthonormal frame {ei}, with e1 = γ
′
(t), we have

Ricϕ(γ
′
(t), γ

′
(t)) ≥ −λ− ∂

∂t
< V, γ

′
(t) > .

Thus

∆s− n− 1

s
≤ λ

3
s+

1

s2
[t2 < V, γ

′
(t) > (γ(t))|s0 − 2

∫ s

0

t < V, γ
′
(t) > dt]

− 1

s2
[t2 < γ

′
(t),∇ϕ > (γ(t))|s0 − 2

∫ s

0

t < γ
′
(t),∇ϕ > dt].

In both cases whenever s ≤ d0 or s > d0, we can obtain that

− 2

s2

∫ s

0

t < V, γ
′
(t) > dt ≤ C(α)K

sα
.

On the other hand by (1.4), we obtain

2

s2

∫ s

0

t < γ
′
(t),∇ϕ > dt ≤ 4K1

s1−α
,

this completes the proof. �
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Abstract. In the following text we show if D is Khalimsky line (resp. Khal-
imsky plane, Khalimsky circle, Khalimsky sphere), then for topological space
X we show the collection of all quasicontinuous maps from D to X has cardi-
nalirty card(X)ℵ0 .

Key words and phrases: Khamilsky circle; Khamilsky line; quasicontinu-
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1. Introduction

Quasicontinuity is one of the weaker forms of continuity. In topological spaces
Y, Z:

• ZY denotes the collection of all maps from Y to Z,
• Q(Y, Z) denotes the collection of all quasicontinuous maps from Y to Z,
• C(Y, Z) denotes the collection of all continuous maps from Y to Z.

There we say f : Y → Z is quasicontinuous at y ∈ Y , if for each open neighbourhood
G of y and open neighbourhood H of f(y), there exists nonempty open subset W
of G such that f(W ) ⊆ H. Also we say f : Y → Z is quasicontinuous if f is
quasicontinuous at each point of Y [2]. It is clear that C(Y,Z) ⊆ Q(Y, Z) ⊆ ZY .

By Khalimsky line we mean Z = {0,±1,±2, . . .} equipped with topological base
{{2n+1} : n ∈ Z}∪ {{2n− 1, 2n, 2n+1} : n ∈ Z} [1]. Let’s denote Khalimsky line
by K and:

V (n) :=

 {2k + 1} n = 2k + 1 ∈ 2Z+ 1 ,

{2k − 1, 2k, 2k + 1} n = 2k ∈ 2Z ,

then V (n) is the smallest open neighbourhood of each n ∈ K. We call K2, Khalim-
sky plane.

Let’s mention ℵ0 = card(N) denotes the least infinite cardinal number.
In this text we compute the cardinality of Q(K, X).

2. Quasicontinuous maps on Khalimsky line and Khalimsky plane

In this section we show card(Q(Kn, X)) = card(X)ℵ0 for each topological space
X.

Theorem 2.1. For topological space X, k ∈ Z, and f : K → X,

1. f is quasicontinuous at 2k − 1,
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2. if there exists i such that f(2k) = f(2k+(−1)i), then f is quasicontinuous
in 2k,

3. in metric space (X, d) if f is quasi continuous at 2k, then there exists i
such that f(2k) = f(2k + (−1)i).

Proof. (1) 2k − 1 is an isolated point of K, so any map on K is continuous (quasi-
continuous) at 2k − 1.

(2) Suppose there exists i such that f(2k) = f(2k+ (−1)i), G is an open neigh-
bourhood of 2k and H is an open neighbourhood of f(2k), then

W := {2k + (−1)i} ⊆ V (2k) ⊆ G,

and W is a nonempty open subset of G, moreover

f(W ) = {f(2k + (−1)i)} = {f(2k)} ⊆ H.

Thus f is quasicontinuous at 2k.
(3) For metric space (X, d) suppose f is quasicontinuous at 2k. For each n ≥ 1

there exists nonempty open subset Wn of V (2k) such that

f(Wn) ⊆ {x ∈ X : d(x, f(2k)) <
1

n
}.

All nonempty open subsets of V (2k) are V (2k) = {2k − 1, 2k, 2k + 1}, {2k − 1} ,
{2k+ 1}. Hence, 2k− 1 ∈ Wn or 2k+ 1 ∈ Wn. Therefore there exists jn ∈ {−1, 1}
with 2k + jn ∈ Wn and d(f(2k), f(2k + jn)) <

1

n
. The sequence {2k + jn}n≥1 has

at least one of the constant subsequences {2k + 1}m≥1 or {2k − 1}m≥1.
Suppose {2k + (−1)i}n≥1 is the constant subsequence of {2k + jn}n≥1. So
f(2k) = lim

n→∞
f(2k + jn) = lim

m→∞
f(2k + (−1)i) = f(2k + (−1)i) which completes

the proof. �

Theorem 2.2. In topological space X we have

card(Q(K, X)) = card(X)ℵ0 .

In particular for infinite countable X,

card(Q(K,K)) = card(Q(K, X)) = ℵℵ0
0 = 2ℵ0 ,

and card(Q(K,R)) = (2ℵ0)ℵ0 = 2ℵ0 .

Proof. Suppose S = {xn}n∈Z is a bisequence in X, by Theorem 2.1, fS : K → X
with fS(2k − 1) = fS(2k) = xk (k ∈ Z) is quasicontinuous. Therefore

card(Q(K, X)) ≥ card{S : S is a bisequence inX}
= card(XZ) = card(X)card(Z) = card(X)ℵ0 .

On the other hand

card(X)ℵ0 = card(XK)
(XK⊇Q(K,X))

≥ card(Q(K, X)),

which completes the proof by Schröder-Bernstein theorem. �

Corollary 2.3. If X is a totally disconnected space (e.g., Cantor set or discrete
space), then C(K, X) is just the collection of constant maps, therefore card(X) =
card(C(K, X)). In particular for D ∈ {Z,N,Q}, we have

card(C(K, D)) = card(D) = ℵ0 < 2ℵ0 = card(Q(K, D)) .
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Theorem 2.4. For j ∈ Z let

j∗ :=

 j j ∈ 2Z+ 1 ,

j − 1 j ∈ 2Z ,

then for each (a1, . . . , an) ∈ Kn (equipped with product topology), topological space
X, and f : Kn → X we have

1. V (a1)× · · · × V (an) is the smallest open neighbourhood of (a1, . . . , an),
2. {(a∗1, . . . , a∗n)} is an open subset of V (a1)× · · · × V (an),
3. if f(a1, . . . , an) = f(a∗1, . . . , a

∗
n), then f is quasicontinuous at (a1, . . . , an),

4. card(Q(Kn, X)) = card(X)ℵ0(= card(X Kn

)).

Proof. (1, 2) Use properties of product topology.
(3) Use a similar method described in Theorem 2.1.
(4) (2Z+ 1)n is infinite countable, so we may suppose (2Z+ 1)n = {u1, u2, . . .}

with distinct uis. Suppose S = {xi}i∈N is an arbitrary sequence in X, by item (3),
fS : Kn → X with fS(a1, . . . , an) = xk (where k ∈ N and (a∗1, . . . , a

∗
n) = uk)

is quasicontinuous. Using a similar method described in Theorem 2.2 , we have
card(Q(Kn, X)) = card(X)ℵ0 . �

3. Quasicontinuous maps on Khalimsky circle and Khalimsky sphere

In topological space W suppose ∞ /∈ W and let A(W ) := W ∪ {∞}. Consider
A(W ) with topology{
U ⊆ W : U is an open subset of W

}
∪
{
U ⊆ A(W ) : W\U is a closed compact subset of W

}
,

we call A(W ) one point compactification or Alexandroff compactification of W [3].
One point compactification of Khalimsky line is called Khalimsky circle and one
point compactification of Khalimsky plane is called Khalimsky sphere. In this
section we show card(Q(A(Kn), X)) = card(X)ℵ0 for each topological space X and
n ≥ 1.

Remark 3.1. For n ≥ 1, compact subsets of Kn are finite. Suppose E is a compact
subset of Kn, thus {V (a1)× · · · × V (an) : (a1, . . . , an) ∈ E} is an open cover of E,
hence there exists finite subset G of E such that

E ⊆
∪{

V (a1)× · · · × V (an) : (a1, . . . , an) ∈ G

}
,

since V (a1)× · · · × V (an)s and G are finite, E is finite too.

Theorem 3.2. card(Q(A(Kn), X)) = card(X)ℵ0 for topological space X and n ≥
1.

Proof. Using the same notations as in Theorem 2.4 for each sequense S = {xi}i∈N
in X, define gS : Kn → X with

gS(a) :=


xk a = (a1, · · · , an) ∈ Kn, (a∗1, · · · , a∗n) = uk, a

∗
1 > 0 ,

x1 a = (a1, · · · , an) ∈ Kn, a∗1 < 0 ,

x1 a = ∞ ,

then for a ∈ A(Kn), we have the following cases.
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• a = (a1, . . . , an) ∈ Kn: in this case for each open neighbourhood U of a and
open neighbourhood V of gS(a), V (a1)× · · · × V (an) is the smallest open
neighbourhood of a and W := {(a∗1, . . . , a∗n)}(⊆ V (a1)× · · · × V (an) ⊆ U)
is a nonempty open subset of U , also

gS(W ) = {gS(a∗1, . . . , a
∗
n)} = {gS(a1, . . . , an)} ⊆ V ,

therefore in this case gS is quasicontinuous at a,
• a = ∞: in this case for each open neighbourhood U of a and open neigh-
bourhood V of gS(a) = u1, by Remark 3.1 there exists finite subset H
of K such that U = A(Kn) \ H, therefore there exists p, q ≥ 1 such that
(2p+1, . . . , 2p+1) = uq ∈ U in particular W := {(2p+1, . . . , 2p+1)} is a
nonempty open subset of U and

gS(W ) = {gS((2p+ 1, . . . , 2p+ 1)} = {u1} = {gS(∞)} ⊆ V .

Thus gS is quasicontinuous at a = ∞ in this case.

Using the above cases gS : Kn → X is quasicontinuous.
Thus

card(Q(A(Kn), X)) ≥ card{gS : S is a sequence inX}
= card{S : S is a sequence inX}
= card(XN) = card(X)ℵ0 .

Using a similar method described in Theorem 2.2 completes the proof. �

4. Conclusion

For Khalimsky line K, Khalimsky plane K2, Khalimsky circle A(K), Khalimsky
sphere A(K2) and topological space X we show the collection of all quasicontinuous
maps from K (resp K2, A(K), A(K2)) to X has card(X)ℵ0 elements. In particular
for countable X with at least two elements, Q(K, X) (the collection of all quasicon-
tinuous maps from K to X) is uncountable.
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Abstract. Let Cc(X) be the functionally countable subalgebra of C(X). Al-
most CP -spaces investigate algebraically and topologically and we characterize
some equivalent conditions with almost CP -spaces.
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1. Introduction

Let C(X) (C∗(X)) be the ring of real-valued continuous (bounded) functions
on a space X. All topological spaces in this article are Tychonoff. The subalgebra
C∗(X) of C(X) has an important role in the study the relation between topolog-
ical properties of X and algebraic properties of C(X). It is shown that, for any
topological space X, C∗(X) ∼= C(βX), (βX is the Stone−Čech compactification of
X). So C∗(X) is a type of C(X). Karamzadeh et al. introduced and studied the
subring Cc(X) of C(X), consisting real-valued continuous with countable image
and turns out that Cc(X) is not isomorphic to any C(Y ) in general, see [3], [2], and
[1]. For each f ∈ Cc(X), zero-set of f , denotes by Zc(f) and X \ Zc(f) = cozc(f)
is the cozero-set of f . The set of all zero-sets of f (cozero-sets of f) is denoted by
Zc(X) (Cozc(X)). All topological space X that have a base of clopen sets is called
zero dimensional. Banaschewski has shown that every zero dimensional space X
has a zero dimensional compactification, denoted by β0X. υX denotes the Hewit
real compactification and for a zero dimensional space X the counterpart of υX is
υ0X. A subset S of X is called C∗-embedded in X if for each f ∈ C∗

c (S) there
exists f̄ ∈ C∗

c (X) such that f̄ |S = f . A space X in Y is Zc-embedded if for each
Z ∈ Zc(X), there exists a set H in Zc(Y ) such that H ∩ X = Z. We recall that
Mcp = {f ∈ Cc(X) : p ∈ Zc(f)} and Ocp = {f ∈ Cc(X) : p ∈ intX(Zc(f))}.
p ∈ X is called an almost CP -point if for each f ∈ Mcp, intX(Zc(f)) ̸= ∅. X is
called an almost CP -space where each point of X is an almost CP -point. Clearly
each almost P -space is almost CP -space but the converse is not necessarily true.
R with the usual topology is not an almost P -space but it is a CP -space and con-
sequently it is an almost CP -space. It is shown that each zero dimensional almost
CP -space is almost P -space.

2. Almost CP -spaces

In this section we investigate almost CP -spaces topologically and algebraically.

Proposition 2.1. If X is a countably completely regular and almost CP -space,
then each nonempty Gδ-set in X has a nonempty interior.
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In the next proposition the equivalent conditions with almost CP -space are
characterized for Cc(X).

Proposition 2.2. Let X be a countably completely regular space, then the following
statements are equivalent.

(1) X is an almost CP -space.
(2) For each f ∈ Cc(X), if Zc(f) ̸= ∅, then intXZc(f) ̸= ∅.
(3) For each g ∈ Cc(X), Zc(g) is a regular-closed set (i.e., Zc(g) = clX intXZc(g)).
(4) If A is a Gδ-set, then intXA is dense in A.
(5) Each non invertible element in Cc(X) is a zero divisor.
(6) For each f ∈ Cc(X), there exists h ̸= 1 such that f = h2f .
(7)

∪
p∈X Ocp =

∪
p∈X Mcp.

Lemma 2.3. Let X be an almost CP -space where T is a dense subset of X and Z
is a zero-set in X. Then clX(intX(Z)) = clX(intX(Z ∩ T )).

Definition 2.4. An element f ∈ Cc(X) is called a regular element (non-zero
divisor) in Cc(X) if fg = 0 and g ∈ Cc(X) implies that g = 0, equivalently
intXZc(f) = ∅. An ideal I of Cc(X) is called regular if it contains a regular
element. f is regular in Cc(X) if and only if X \ Zc(f) = cozc(f) is dense in
X.

Theorem 2.5. Let X be a topological space, then the following statements are
equivalent.

(1) X is an almost CP -space.
(2) For a zero dimensional space X, υ0X is an almost CP -space.
(3) Each dense Zc-embedded subspace of X is Cc-embedded in X.
(4) Each regular element in Cc(X) has an inverse element in Cc(X).
(5) Cc(X) has no proper regular ideal.

Corollary 2.6. Let X and Y are topological spaces and Cc(X) ∼= Cc(Y ). If X is
an almost CP -space, then Y is also an almost CP -space.

From [5], we know that a zero dimensional space X is pseudocompact if and only
if β0X = υ0X, so we have the next corollary.

Corollary 2.7. Let X be a zero dimensional topological space, then β0X is an
almost CP -space if and only if X is a pseudocompact and almost CP -space.

We recall that an ideal I in a ring R is a z◦-ideal if it consists of zero divisors
and for each a ∈ I, Pa ⊆ I, where Pa is the intersection of all the minimal prime
ideal of R containing a. The z◦-ideal in Cc(X) is denoted by z◦c -ideal. Clearly each
ideal Pa for any a ∈ Cc(X) is a z◦c -ideal, which is called basic z◦c -ideal. The next
result, which is an algebraic characterization of almost CP -spaces, immediately
shows that the sum of z◦c -ideals in Cc(X), where X is an almost CP -space, is either
a z◦c -ideal or the whole of Cc(X).

Theorem 2.8. The following statements are equivalent.

(1) X is an almost CP -space.
(2) Every zc-ideal in Cc(X) is a z◦c -ideal.
(3) Every maximal ideal (resp., prime zc-ideal ) in Cc(X) is a z◦c -ideal.
(4) Every maximal ideal in Cc(X) consists entirely of zero divisors.
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(5) The sum of any two ideals consisting of zero divisors is either Cc(X) or
consists of zero divisors.

(6) For each non-unit element f ∈ Cc(X), there exists a nonzero element g ∈
Cc(X) with Pf ⊆ Ann(g).
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A NOTE ON ALMOST LOCALLY λ-COMPACT SPACES

SOMAYEH SOLTANPOUR, MEHRDAD NAMDARI, AND SAHAM MAJIDIPOUR

Abstract. Let X be a Hausdorff topological space if every nonempty open
set of X contains a nonempty set with λ-compact closure, X is called almost
locally λ-compact. It is shown that every locally λ-compact Pλ-space is an
almost locally µ-compact space, for some µ ≤ λ. It turns out that a locally

λ-compact and λ-pseudo discrete space X is a λ-discrete space.
Key words and phrases: λ-compact; locally λ-compact; λ-pseudo discrete.

1. Introduction

Throughout this article all topological spaces X are infinite completely regular
Hausdorff (i.e., Tychonoff) unless otherwise mentioned and all nonzero ring homo-
morphisms carry the identity to the identity. We recall that a topological space X
(not necessarily Hausdorff) is said to be λ-compact whenever each open cover of X
can be reduced to an open cover of X whose cardinality is less than λ, where λ is
the least infinite cardinal number with this property. We note that compact spaces
(resp., Lindelöf noncompact spaces) are ℵ0-compact (resp., ℵ1-compact spaces) and
in general every topological space X is λ-compact for some infinite cardinal num-
ber λ. It is also observed, in [4] that given any infinite cardinal number λ there
exists a space Y which is λ-compact and if λ ≥ ℵ1 is a regular cardinal, then Y
is a P -space too (note, there are no infinite compact P -spaces). We recall that
an ideal Iof C(X) with g(I) ≥ λ to be λ-fixed, where λ is an infinite cardinal
number, whenever each subideal A of I with g(A) < λ, is fixed, see [4]. In [6], it
turns out that X is a λ-compact space if and only if every λ-fixed ideal in C(X)
is fixed and λ is the least infinite cardinal number with this property. Conse-
quently, X is compact if and only if every ℵ0-fixed ideal is fixed. Let λ be any
infinite cardinal number and X be a topological space. We remind the reader that
X is called a Pλ-space if whenever {Gi : i ∈ I} with |I| < λ is a collection of
open sets in X, then G =

∩
i∈I Gi is open too. Clearly every topological space

is a Pℵ◦ -space, and X is a P -space if and only if X is a Pℵ1 -space. Almost lo-
cally λ-compact spaces are introduced and investigated. Let X be a topological
space, we put CK,λ(X) = {f ∈ C(X) : cl(X \ Z(f)) is λ-compact}. In particular,
CK,ℵ0(X) = CK(X). It is shown that CK,λ(X) is a free ideal if and only if X
is locally λ-compact but not compact. The reader is referred to [3] for undefined
terms and notations.

2. Main results

Recall that a topological space X is called λ-compact if each open cover of X
can be reduced to an open cover whose cardinality is less than λ, where λ is the
least infinite cardinal number with this property, see [6].
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Definition 2.1. A Hausdorff space X is called almost locally λ-compact if every
nonempty open set of X contains a nonempty set with λ-compact closure.

We remind the reader that almost locally ℵ0-compact space is called almost
locally compact space, see [2]. A Hausdorff space X is said to be locally λ-compact
if every point in X has a λ-compact neighborhood, see [6]. If µ ≤ λ, then every
µ-compact subspace of a Pλ-space is closed, see [6].

Proposition 2.2. Every locally λ-compact Pλ-space is an almost locally µ-compact
space, for some µ ≤ λ.

Proof. Suppose that X is a locally λ-compact space, then for every x ∈ X there
exists a λ-compact neighborhood Ux. If A is a nonempty open set of X and x ∈ A,
there exists an open neighborhood Vx that containing x where x ∈ Vx ⊆ A. Put
G = Ux∩Vx so x ∈ G and G is an open subset of A. Since Ux is a λ-compact set of
a Pλ-space X we infer that Ux is closed. cl(G) ⊆ cl(Ux) = Ux and Ux is λ-compact,
so cl(G) is µ-compact for some µ ≤ λ and the proof is complete. �

Let X be almost locally λ-compact and Y be an open subspace of X. If A be
a nonempty open subset of Y , then A is open in X and consequently there exists
a nonempty set G where clX(G) is λ-compact and G ⊆ A. clY (G) ⊆ clX(G), so
clY (G) is µ-compact for some µ ≤ λ. Now, we can give the following fact.

Proposition 2.3. Every open subspace of an almost locally λ-compact space is an
almost locally µ-compact space for some µ ≤ λ.

Definition 2.4. A topological space X is said to be a λ-pseudo discrete space if
every λ-compact subset of X has interior of cardinality less than λ, where λ is the
least infinite cardinal number with this property.

ℵ0-pseudo discrete space is called pseudo discrete space, see [1]. Clearly, if every
λ-compact subset of X has cardinality less than λ then X is a λ-pseudo discrete
space and in particular, every P -space is a pseudo discrete space. The next two
results are the counterparts of facts in [2].

Proposition 2.5. Every open subspace of a λ-pseudo discrete space is λ-pseudo
discrete space.

Proof. Suppose that X is a λ-pseudo discrete space and Y is an open subspace
of X. If A is a λ-compact subset of Y , then A is a λ-compact subset of X and
|intX(A)| < λ. We know intX(A) = intY (A)∩ intX(Y ) = intY (A) hence the proof
is complete. �

We recall that a point x ∈ X is called λ-isolated if it has a neighborhood with
cardinality less than λ, and Iλ(X) is denoted the set of λ-isolated points of X. A
topological space X is said to be λ-discrete if every point of X is λ-isolated i.e.,
Iλ(X) = X, see [6].

Proposition 2.6. Every locally λ-compact and λ-pseudo discrete space is a λ-
discrete space.

Proof. Since X is locally λ-compact we infer that x ∈ X has a neighborhood V
where cl(V ) is λ-compact. The definition of λ-pseudo discrete implies that the
interior of cl(V ) has cardinality less than λ and consequently |V | < λ i.e., x has a
neighborhood with cardinality less than λ. Therefore X is λ-discrete. �
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Definition 2.7. A topological space X is said to be a λ-pseudo space if every λ-
compact subset of X has cardinality less than λ.

We recall that ℵ0-pseudo space is called pseudo finite space, see [5]. Clearly,
every subspace of a λ-pseudo space is a λ-pseudo space.

Example 2.8. Every λ-pseudo space is λ-pseudo discrete but the converse is not
true in general. For instance, we consider the free union of a discrete space D and
the rational numbers set Q, it is a pseudo discrete space which is not pseudo finite.

We put CK,λ(X) = {f ∈ C(X) : cl(X \ Z(f)) is λ-compact}. In particular,
CK,ℵ0(X) = CK(X).

Theorem 2.9. CK,λ(X) is a free ideal if and only if X is locally λ-compact but
not compact.
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ON THE REAL MAXIMAL IDEALS OF Lcc(X)

SOMAYEH SOLTANPOUR

Abstract. Let Lcc(X) denote the locally countable subalgebra of C(X) whose

local domain is cocountable. We investigated the real maximal ideals of
Lcc(X). For a maximal ideal M in Lcc(X) it is shown that M is real if
and only if Zlc[M ] is closed under countable intersection if and only if Zlc[M ]
has the countable intersection property.

Key words and phrases: Local domain; real; infinitely large; infinitely small.

1. Introduction

In [2] and [1] the subalgebra Cc(X) (C∗
c (X)) of C(X), consisting of all (resp.,

bounded) functions with countable image is introduced and studied. In contrast to
C∗(X), Cc(X) enjoys some nice algebraic properties of C(X), which are not usually
satisfied by C∗(X). Motivated by the fact that Cc(X) is the largest subring of
C(X) whose elements have countable image, the subring Lc(X) of C(X) which lies
between Cc(X) and C(X) is introduced in [4]. Let f ∈ C(X), then its local domain,
which is denoted by Cf , is defined by Cf =

∪
{U |U is open in X and |f(U)| ≤ ℵ0}.

We recall that Lc(X) is the ring of all continuous functions that its local domains
are dense in X. This subring naturally leads us to consider a new subring of C(X),
namely Lcc(X), which lies between Cc(X) and Lc(X). Our aim in this article is
to study Lcc(X) further and try to record some facts about Lcc(X) and indicate
the relations between topological properties of X and the algebraic properties of
Lcc(X). Let Lcc(X) = {f ∈ C(X) : |X \ Cf | ≤ ℵ0}, where Cf is the union of
all open subsets U ⊆ X such that |f(U)| ≤ ℵ0. In [5], it is shown that Lcc(X)
enjoys most of the important properties which are shared by C(X) and Cc(X).
For a topological space X, we denote by Zlc(X) the set of all zero-sets of Lcc(X).
Whenever C(X)/Mp ∼= R, then Mp is called real, else hyper-real and υX is
in fact the set of all p ∈ βX such that Mp is real. For an element f of C(X),
the zero-set (resp., cozero-set) of f is denoted by Z(f) (resp., Coz(f)) which is
the set {x ∈ X : f(x) = 0} (resp., X \ Z(f)). We use Z(X) (resp., Coz(X)) to
denote the collection of all the zero-sets (resp., cozero-sets) of elements of C(X).
Similarly, Zlc(X) (resp., Cozlc(X)) is denoted the set {Z(f) : f ∈ Lcc(X)} (resp.,
{Coz(f) : f ∈ Lcc(X)}). A zero-dimensional topological space is a Hausdorff space
with a base consisting of clopen sets. We refer to [3], [2], and [1] for any notation
and terminology unfamiliar to the reader. Throughout this article all topological
spaces are assumed to be infinite completely regular and Hausdorff (unless otherwise
mentioned).
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2. Main results

Definition 2.1. [5, Definition 3.1] Let f ∈ C(X) and Cf be the union of all open
sets U ⊆ X such that f(U) is countable, i.e.,

Cf =
∪

{U |U is open in X and |f(U)| ≤ ℵ0}.
We call Cf the local domain of f and denote by Lcc(X) the set of all f ∈ C(X)
whose local domain is cocountable, i.e.,

Lcc(X) = {f ∈ C(X) : |X\Cf | ≤ ℵ0}.

It is obvious that Lcc(X) is a subring of C(X) containing Cc(X). In fact Lcc(X)
is a subalgebra as well as a sublattice of C(X) and we call it the co-locally func-
tionally countable subalgebra of C(X).

We remind the reader that a Hausdorff space X is called co-locally countable
completely regular (briefly, lcc-completely regular) if whenever F ⊆ X is a closed
set and x ∈ X \ F , then there exists f ∈ Lcc(X) with f(F ) = 0 and f(x) = 1, see
[5].

It is shown that in studying Lcc(X) the space can be consider co-locally countable
completely regular.

Definition 2.2. [5, Definition 3.6] Let f ∈ C(X) and CF
f be the union of all open

sets U ⊆ X such that f(U) is finite, i.e.,

CF
f =

∪
{U |U is open in X and |f(U)| < ℵ0}.

Denote by LcF (X) the set of all f ∈ C(X) such that CF
f is cocountable, and call it

co-locally functionally finite subalgebra of C(X), i.e.,

LcF (X) = {f ∈ C(X) : |X\CF
f | ≤ ℵ0}.

In a special case, for f ∈ C(X) let Cc
f be the union of all open sets U ⊆ X such

that f(U) is constant, i.e.,

Cc
f =

∪
{U | U is open in X and |f(U)| = 1}.

We define Lc1(X) to be the set of all f ∈ C(X) such that Cc
f be cocountable in X,

and call it co-locally functionally constant subalgebra of C(X), i.e.,

Lc1(X) = {f ∈ C(X) : |X\Cc
f | ≤ ℵ0}.

Clearly, LcF (X) and Lc1(X) are subalgebra of Lcc(X).

Definition 2.3. A maximal ideal M in Lcc(X) is called real if Lcc(X)
M

∼= R and if
not real, it is called hyper-real.

Proposition 2.4. Let M be a maximal ideal in Lcc(X) and f ∈ Lcc(X). Then
|M(f)| is infinitely large if and only if f is unbounded on every zero-set of Zlc[M ].

Proposition 2.5. Let f ∈ Lcc(X) then f is unbounded on X if and only if |M(f)|
is infinitely large for some maximal ideal M in Lcc(X).

Proposition 2.6. Let X be zero-dimensional, then f is unbounded on every non-
compact zero-set of Zlc(X) if and only if |M(f)|is infinitely large for every free
maximal ideal M in Lcc(X).

Proposition 2.7. If M is a maximal ideal in Lcc(X), then M is hyper-real if and
only if |M(f)| is infinitely small for some f ∈ Lcc(X).

Proposition 2.8. Every maximal ideal in Lcc(X) and LcF (X) is real.
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Proposition 2.9. Every fixed maximal ideal in Lcc(X) is real.

We remind the reader that L∗
cc(X) = C∗(X) ∩ Lcc(X).

Proposition 2.10. If M is real maximal ideal in Lcc(X), then M ∩ L∗
cc(X) is a

real maximal ideal in L∗
cc(X).

Proposition 2.11. If M is a maximal ideal in L∗
cc(X), then M ∩LcF (X) is a real

maximal ideal in LcF (X).

An ideal M in L∗
cc(X) is maximal if and only if it is a contraction of a maximal

ideal in C∗(X). Consequently the maximal ideals in L∗
cc(X) are M∗p

lc = {f ∈
L∗
cc(X) : fβ(p) = 0} where p ∈ βX.

Proposition 2.12. Let M be a maximal ideal in Lcc(X), then M is real if and
only if M ∩ L∗

cc(X) is a maximal ideal in L∗
cc(X).

Proposition 2.13. Let M be a maximal ideal in Lcc(X), then M is real if and
only if Zlc[M ] is closed under countable intersection if and only if Zlc[M ] has the
countable intersection property.
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GENERALIZED POWER SERIES FIELD WITH ORDER

TOPOLOGY

PARISA ABBASPOUR AND JAFAR SADEGH EIVAZLOO

Abstract. We will be dealing with the ordered field of generalized power
series, [[RZ]], and will prove that the field of real rational functions, R(x), is
dense in it. As a corollary, the field R(x) is not dense in its real closure.

Key words and phrases: generalized power series; real closed field, Scott
complete, real closure.

1. Introduction

For any ordered field F and ordered abelian group G, the set [[FG]] of all func-
tions G → F whose supports are well ordered in G equipped with pointwise sum
and Cauchy product (f1f2)(g) =

∑
i+j=g f1(i)f2(j) (a finite sum by the condition

on the supports) forms a field. It can be ordered by comparison of values at the
minimum of support of the difference. Elements of [[FG]] can also be thought of
as those formal power series

∑
g∈G f(g)tg which have well ordered supports. The

indeterminate t is taken to be a positive F -infinitesimal. Indeed,

[[FG]] =

{ ∑
g∈G

agt
g | the support {g|ag ̸= 0} of

∑
g∈G

agt
g is well ordered

}
.

It is ordered by
∑

g∈G agt
g > 0 if ag0 > 0, where g0 is the minimum of support

of
∑

g∈G agt
g. Then, [[FG]] is equipped with the interval topology induced by the

defined order.
An ordered field R is called real closed if every nonnegative element of R has

a square root in R, and for every P (x) ∈ R[x] with odd degree, P (x) = 0 has a
solution in R. For every ordered field F , there is an ordered field E which is the
unique real closed ordered field that extents F . This real closed field which is called
the real closure of F , is denoted by RC(F ). The real closure of the ordered rational

field Q is the real algebraic numbers Q̃. By [2] (6.10), the generalized power series
field [[FG]] is real closed if and only if F is so and G is divisible. For example,
[[RQ]] is real closed, while the Laurent series ordered field [[RZ]] is not.

A cut of an ordered field F is a subset C ⊂ F which is downward closed in it. A
cut C is a gap if it does not have a least upper bound in the field. An ordered field
without any gap is called Dedekind complete. A gap C ⊂ F is called regular if for
any ϵ ∈ F>0, there exist a ∈ C and b ∈ F \C such that b− c < ϵ. An ordered field
without any regular gap is called Scott complete. It was proved in [3] (Theorem 1),
that any ordered field F has a (unique up to an isomorphism of ordered fields which

2010 Mathematics Subject Classification. 12J15, 12J10 .
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is identity on F ) Scott completion. It is characterized by being Scott complete and
having F dense in it.

We recall the following theorem from [1].

Theorem 1.1. For any ordered abelian group G and ordered field F , the generalized
power series field [[FG]] is Scott complete if and only if F is so.

For example, the Laurent series ordered field [[RZ]] is Scott complete.
Furthermore, the real closure and Scott completion of an ordered field F are

related by the following theorem.

Theorem 1.2. The ordered field F is dense in RC(F ) if and only if its Scott
completion is real closed.

For proof, see [3] (Theorem 2).

2. Main results

Definition 2.1. Let F be a field and G an ordered abelian group. A valuation on
a field F is a function v : F → G ∪ {∞} with following properties.

(1) v(a) = 0 if and only if a = ∞,
(2) v(ab) = v(a) + v(b),
(3) v(a + b) ≥ min{v(a), v(b)}, with equality if v(a) ̸= v(b).

Then, F is called a valued field with the valuation v and the valuation group G.

Remark 2.2. Recall that the generalized power series field [[FG]] is a valued field
with the valuation v(

∑
g∈G ag t

g) = g0 , where g0 is the minimum of all g ∈ G such
that ag ̸= 0.

The field of real rational functions, R(t), is an ordered field with the order <
induced from (R, <) and t < R as a positive infinitesimal. This ordered field is an
ordered subfield of the Laurent series ordered field [[RZ]]. In the following theorem,
we show that R(t) is dense in [[RZ]].

Theorem 2.3. R(t) is dense in [[RZ]].

Proof. Let a =
∑

g∈G agt
g and b =

∑
g∈G bgt

g be two elements in [[RZ]] such that
0 < a < b. Then we have the following two cases.

Case i) v(b) < v(a). In this case, bv(b) > 0 and for every element r ∈ R such

that bv(b) > r > 0 we have a < rtv(b) < b. Notice that rtv(b) ∈ R(t).
Case ii) v(b) = v(a) := g . In this case, 0 < av(a) < bv(b). Then, for every

element r ∈ R with av(a) < r < bv(b), we have a < rtg < b while rtg is in R(t). �

It is clear that R(t) is a proper subfield of [[RZ]]. So there exists an element
a ∈ [[RZ]] \ R(t). Then the set C := {b ∈ R(t)|b < a} is a gap in R(t). As R(t) is
dense in [[RZ]], the gap C is regular. So the ordered field R(t) is not Scott complete.
Indead, we have the following conclusion.

Corollary 2.4. The Scott completion of the ordered field R(t) is the Laurent series
ordered field [[RZ]].

Proof. As R(t) is dense in [[RZ]] which is Scott complete by Theorem 1.1, [[RZ]] is
the Scott completion of R(t). �
Corollary 2.5. The ordered field R(t) is not dense in its real closure.
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Proof. The Laurent series ordered field [[RZ]] is not real closed, e.g. the positive
infinitesimal t does not have its square root in [[RZ]]. So the Scott completion
of R(t) is not real closed. Thus, by Theorem 1.2, R(t) is not dense in its real
closure. �
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FINDING GENERALIZED SYMMETRIES OF NC-BURGERS

EQUATIONS USING MASTER’S SYMMETRY.

MEHDI JAFARI AND MOJDEH GANDOM

Abstract. In this paper, we propose using generalized symmetries as an alter-
native to recursion operators for infinite hierarchies of symmetries in evolution

equations. ”Master symmetries” are generalized vector fields that produce
new symmetries when combined with existing ones. They can be used to solve
problems like the non-commutative Burgers equations.

Key words and phrases: Master symmetry ;nc-Burgers ; Generalized Sym-

metries.

1. Introduction

Basically, the calculation of generalized symmetries of a certain system of dif-
ferential equations is done like the calculation of geometric symmetries, but with
this process that we must first put the symmetry in an evolutionary form. Then
the order of derivatives on which the characteristic Q(x, u(n)) may depend must
be predetermined. The basic trade-off in this context is that the more derivatives
of u on which Q depends, the more generalized symmetries are found, but on the
other hand, this solution is long and tedious, whereas for surface symmetries higher
will be more boring and it takes time. Because the set of generalized symmetries
is a non-degenerate system of differential equations, it forms a Lie algebra. Use
this result to construct new symmetries and obtain the master symmetry for non-
commutative Burgers equations.

2. Preliminaries

Let x = (x1, . . . , xp) independent variables, and u = (u1, . . . , uq) the dependent
variables in our problem.

Definition 2.1. A vector field v (as shown below) is defined as a generalized vector
field in which, in addition to independent and dependent variables, their derivatives
also appear.

(2.1) v =

p∑
i=1

ξi[u]
∂

∂xi
+

q∑
α=1

ϕα[u]
∂

∂uα
,

such that ξi and ϕα are smooth differential functions.

Definition 2.2. suppose v is generalized vector field, then if for every smooth
solution u = f(x) and

(2.2) ∆ν [u] = ∆ν(x, u
(n)) = 0, ν = 1, 2, . . . , l
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be satisfied in the following relationship.

(2.3) prv[∆v] = 0, ν = 1, 2, . . . , l.

In this case v is a generalized infinitesimal symmetry of a system of differential
equations.

Definition 2.3. assume q-tuple of differential functions such that

Q[u] = (Q1[u], . . . , Qq[u])ϵAq.

then the generalized vector field vQ is called an evolutionary vector field if and only
if vQ be defined as follows, and Q is called its characteristic

(2.4) vQ =

q∑
α=1

Qα[u]
∂

∂uα
.

Theorem 2.4. If v is a symmetry of a system of differential equations, then vQ is
its evolutionary representative.

3. third order Generalized Symmetries

Consider non-commutative Burgers equation as follows:

(3.1) ut = uxx + 2uux.

We want to calculate all generalized third-order symmetries of the above equation
Considering the infinitesimal generator in evolutionary form v = Q∂u and consid-
ering Q = Q(x, t, u, ux, uxx, uxxx) and according (2.2) to we will have

(3.2) DtQ = D2
xQ+ 2uDxQ+ 2uxQ.

By using (3.1) and its prolongations, we can substitute any t derivatives of u in
solutions .i.e

ut = uxx + 2uux,
utx = 2u2

x + 2uuxx + uxxx,
utt = 8uxxux + 8uu2

x + 4u2uxx + 4uuxxx + uxxxx,
utxx = 6uxxux + 2uuxxx + uxxxx,
...

After examining (3.2), we can identify u’s derivative coefficients in descending order.
Finally we conclude that every third order generalized symmetry of the nc-Burgers’
equation has a linear, constant-coefficient combination of seven basic characteristics:

Q1 = (uuxx + 1/3uxxx + u2ux + u2
x)t

3 + · · · ,

Q2 = −3/4 + (3u2
x + 3u2ux + 3uuxx + uxxx)t

2 + (2xuux + u2 + xuxx)t+ 1/4uxx
2 + 1/2xu,

Q3 = 1/2 + (6u2
x + (6u2 + 1)ux + 6uuxx + 2uxxx)t+ 2xuux + u2 + xuxx,

Q4 = (2uux + uxx)t
2 + (1/2xux + 1/2u)t+ ux + 1/4x,

Q5 = (2uux + uxx)t+ 1/2xux + 1/2x,

Q6 = uxx + 2uux,

Q7 = uuxx + 1/3uxxx + u2ux + u2
x.
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4. The Lie Bracket

Definition 4.1. Let vQ and vR be evolutionary vector fields. Their Lie bracket
[vQ, vR] = vS is an evolutionary vector field with characteristic.

(4.1) S = prvQ(R)− prvR(Q).

Theorem 4.2. Generalized symmetries of a system of differential equations form a Lie
algebra.

5. Forth-order generalized symmetries

In certain cases, this result ( i.e (4.2)) can be used to construct new generalized sym-
metries (Forth-order generalized symmetries) from known ones in (third-order generalized
symmetries) Therefore, given that [vi, vj ] is a symmetry with characteristic prvi(Qj) −
prvj(Qi) for any i, j. So for nc-Burgers will have

Q8 = prv3(Q7)− prv7(Q3), Q9 = prv2(Q7)− prv7(Q2),

Q10 = prv1(Q7)− prv7(Q1), Q11 = prv1(Q3)− prv3(Q1),

Q12 = prv1(Q2)− prv2(Q1) = prv2(Q3)− prv3(Q2).

In such a way that the characteristics of Q8, Q9, Q10, Q11, Q12 make the new fourth order
symmetries for nc-Burger as follows

Q8 =1/2uxx + uux + uxxxx + 10uxxux + 4uuxxx + 12uu2 + 6u2ux + 4u3ux,

Q9 =4tu3ux + tuxxxx + 6uxxtu
2 + 12tuu2

x + 10tuuxuxx + · · · ,

Q10 =1/4u+ 1/8uxxx
2 + 1/2t2uxxxx + 1/2tu3 + 2t2u3ux + · · · ,

Q11 =1/4x+ 2t3uxxxx + 3t2u3 + 1/4x3ux + 3/4x2u+ 8xt3u3 + · · · ,

Q12 =5/2t3uxx + 3t3uuxx + 3/2t2x2uux + 3t3u2uxx+ 3/2ut2 + 3uxxt
2 + · · · .

This process can be repeated indefinitely.

6. Fifth-order generalized symmetries

In a similar way, the following results are obtained for fifth-order symmetries.

Q13 = prv1(Q11)− prv11(Q1), Q14 = prv1(Q10)− prv10(Q1),

Q15 = prv11(Q3)− prv3(Q11), Q16 = prv11(Q7)− prv7(Q11),

Q17 = prv10(Q7)− prv7(Q10), Q18 = prv8(Q3)− prv3(Q8),

such that:

Q13 = 5t5u4ux + 10t5u3uxx + 5t3u3x+ 5t5 + uxxxxu+ 5/2t4uxxxxx + · · · ,

Q14 = 5t4u2
xx + 9u2

xt
3 + 9/4u2t2 + 1/2t4uxxxxx + 27/8uxt

2 + · · · ,

Q15 = 10t3uxxxxx + 60u3uxt
2x+ 45/2u2uxtx

2 + · · · ,

Q16 = 5/2ux + 3t2uxxxxx + 90t2u2u2
x + 30uxxt

2u3 + · · · ,

Q17 = 25uxtuuxx + 1/2tuxxxxx + 1/4uxxxxx+ 5tu2
xx + 15/2tu3

x + · · · ,

Q18 = 1/2ux + 3uxxx + 4uxxxxx + 40u2
xx + 9u2

x + · · · .
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his process can be repeated indefinitely so Q19 = prv7(Q13) − prv13(Q7), . . . will be a
sixth order symmetry and etc. Thus nc-Burgers equation has an infinite collection of
generalized symmetries depending on progressively higher and higher order derivatives of
u. In Fuchssteiner’s terminology, v7, v3 and v1 are known as a ”master symmetry” for the
nc- Burger’s equation.
This method finds generalized symmetries of differential equations of any order. But has
the drawback that the order of derivatives must be specified beforehand for symmetry
coefficients.

7. Main results

Generalized time-dependent symmetry can be an alternative to the recursive operator
method for creating symmetry evolution equations.They’re called ”master symmetries.”
A master symmetry is a vector field w that, when vQ is a generalized symmetry of the
evolution equation, the Lie bracket [w, vQ] is also a symmetry. Note that any symmetry of
the system satisfies this property, then to be really interesting, the master symmetry should
produce new symmetries, mapping, say, the n-th member of the hierarchy of symmetries
to the (n+ 1)-st one, as the nc-Burgers’ case does.
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Abstract. We present an algorithm for computing A-annihilated elements

of the form QI [1] in H∗QS0 where I runs through admissible sequences of
positive excess. This is algorithm with polynomial time complexity to address
a sub-problem of an unsolved problem in algebraic topology known as the hit
problem of Peterson which is likely to be NP-hard.
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1. Introduction

Given a topological spaceX and an integer d ≥ 0, H∗(X;F2) =
⊕

d≥0H
d(X;F2)

is a graded F2-algebra. For k ≥ 0 and d > 0, there are F2-linear homomorphisms
Sqk : Hd(X;F2) → Hd+k(X;F2) known as Steenrod squares. These ‘cohomology
operations’ have nice properties. In particular,

• Sqk(x) = 0 if k > d and Sqkx = x2 if k = d.
• The operation Sq0 is just the identity.

• For f, g ∈ H∗(X;F2), Sq
k(fg) =

∑k
i=0 Sq

i(f)Sqk−i(g) (Cartan formula)

There operations live in an associative and non-commutative algebra, called the
(mod 2) Steenrod algebra, denoted A. The hit problem is to determine H∗(X;F2)
is a module over A. For the cohit module defined by

Qd(Hn(X;F2)) := Hn(X;F2)⊗A F2

the hit problem asks for determining a F2-basis for Q
d(Hn(X;F2)).

For X(n) = RP×n it is known that

P (n) := H∗(X(n);F2) ≃ F2[x1, x2, . . . , xn : deg(xi) = 1],

as an algebra. The hit problem of Peterson is concerned with determining gener-
ators of P (n) or equivalently determining the cohit module Qd(n) := Qd(P (n)).
This problem is open for n > 5 (see [5, 6, 9]). For X = BO(n) it is known that

H∗(BO(n)) ≃ P (n)Σn ≃ F2[ei : deg(ei) = i, i > 0],

the hit problem is known as the symmetric hit problem which is open for n > 4 (see
[3, 2]).
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2. Hit problem in homological setting

The hit problem is often address by determining relevant numerical invariants
such as dimF2 Q

d(H∗(X;F2) or at least providing an upper bound in the dimension
of cohit module. To study the problem in homological setting, notice that opera-
tions Sqi induce dual operations Sqi∗ : Hn(X;F2) → Hn−i(X;F2) by the Universal
coefficient theorem. For

AnnA(Hn(X;F2)) :=

{
x ∈ Hn(X;F2)|Sqi∗x = 0 for all i > 0

}
we have a duality of vector spaces over F2 as

HomF2
(Qd(Hn(X;F2))),F2) ≃ AnnA(Hn(X;F2)).

The hit problem in dual setting is to determine the submodule of A-annihilated
classes in H∗(X;F2) given by

⊕+∞
n=1 AnnA(Hn(X;F2)).

3. Main results

A solution to the symmetric hit problem for all n is equivalence to solving it
for X = Z × BO and vice versa. We have considered this point of view in [10].
We prefer study the dual of the symmetric hit problem. For QS0 = colim ΩiSi,
the unit of the KO spectrum provides a map QS0 → Z × BO which induces a
monomorphism of Aop-modules in homology. We may ask for the description of
A-annihilated classes in H∗QS

0 whose complete description is unknown. But, there
are some sufficient conditions that allow one to identify some of these classes. The
following is due to Curtis [1, Lemma 6.2, Theorem 6.3] (see also Wellington [7,
Theorem 5.6] as well as [8]).

Theorem 3.1. For a generator QI [1] of H∗QS
0, suppose I = (i1, . . . , is) with s > 1

is a sequence so that ex(I) < 2ϕ(i1) and 0 ≤ 2ij+1 − ij < 2ϕ(ij+1) for 1 ≤ j ≤ s− 1.

Then QI [1] is A-annihilated. If I = (i) with i < 2ϕ(i), i.e. i = 2t − 1 for some
t > 0, then Qi[1] is A-annihilated. Here, ex(QIx) = i1 − (i2 + · · ·+ is).

Here, Qi is the i-th Kudo-Araki operations which acts on F2-homology of QS0.
Note that the homology of QS0 is a polynomial algebra ‘generated’ by Dyer and
Lashof by symbols QI [1] where QI is an iterated Kudo-Araki operation given by
QI := Qi1 · · ·Qis for I = (i1, . . . , is). The aforementioned result of Curtis, reduces
the problem to determining all sequences I that satisfy the given conditions. We
say I = (i1, . . . , ir) is an (indecomposable) A-annihilated if it satisfies conditions of
Theorem 3.1. Our main result is an algorithm that determines all such sequences.

Theorem 3.2. Suppose r > 2 and i0 > 0 are given. Consider the following
algorithm.
For k = 0, . . . , r − 1 do the following

(1) n := ik;
(2) choose an allowable 0 in the binary expansion of n, say ni, and set ϕ(m) = i− 1;
(3) for j ≤ ϕ(m) set mj := nj+1;
(4) for 0 ≤ j < ϕ(m) set mj := 1

(5) ik+1 :=
∑ψ(ik)−2
j=0 mj2

j
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Then I = (i1, . . . , ir) is an A-annihilated sequence. Moreover, by choosing various
different allowed 0s, the above algorithm determines all such sequences. In partic-
ular, the set of A-annihilated sequence I of length r and dimension |I| = i0 would
be included in the set of A-annihilated sequences produced by the above algorithm.

There is a notion of an allowable 0 which we shall introduce in the next section.
Here, specifically for positive integers m and n we fix that mj , nj{0, 1} are the
coefficients of binary expansion of m and n, respectively. More precisely, m =∑+∞

0 mj2
j and likewise n. The function ϕ is defined by ϕ(m) = min{j : mj = 0}.

It is fairly simple to compute the complexity of the above algorithm.

Corollary 3.3. The complexity of our algorithm is O(t3). In particular, our algo-
rithm is run in polynomial time.

For the hit problem, the following seems of interest. Although, it is in contrast
with the conjecture that the hit problem of Peterson in NP-hard.

Corollary 3.4. (i) For every k > 0, there is a submodule inside

k⊕
n=1

AnnA(Hn(QS
0;F2)),

which is determined in polynomial time.
(ii) For every k > 0, there is a submodule inside

k⊕
n=1

AnnA(Hn(Z×BO;F2)),

which is determined in polynomial time.

Proof. Note that our algorithm computes a submodule inside⊕
n=1

AnnA(Hn(QS
0;F2)).

Recall that the evident maps QS0 → Z × BO induces a monomorphisms of A-
modules Hn(QS

0;F2) → H∗(Z × BO;F2) [10]. Applying Corollary 3.4 our claims
follow. �

Finally, notice that we could define a formal evaluation from the Dyer-Lashof
algebra R to H∗QS

0 sending QI to QI [1] which is an homomorphism of A-modules.
Consequently, our algorithm provides A-annihilated monomials in R. Furthermore,
noting that R is a quotient of the Λ algebra [8], we have a similar conclusion for
monomials λI in the Λ algebra. We refer the reader to elsewhere for details of our
conclusions.

4. Sketch of Proof for Theorem 3.2

We begin with a simple reduction.

Lemma 4.1. For I = (i1, . . . , ir) let i0 := i1 + · · · + ir. Then I is A-annihilated
if and only if for (i0, I) := (i0, i1, . . . , ir) we have 0 < 2ij+1 − ij < 2ϕ(ij+1) for all
j ∈ {0, . . . , r − 1}, where i0 = |I|.
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This immediately follows from the definition of the excess. Our next observa-
tions, mostly are so easy to prove once we work with binary expansions. First, we
make another simple, yet useful, definition. Define ψ : N → N ∪ {0} by

ψ(n) = max
{
j : nj = 1

}
+ 1 = min

{
j : ∀k ≥ j, nk = 0

}
.

The following lemma records some nice properties of ϕ and ψ.

Lemma 4.2. Suppose I = (i1, . . . , ir) is an admissible sequence with ex(I) > 0
such that 0 < 2ij+1 − ij < 2ϕ(ij+1). Then, fixing i0 =

∑r
j=1 ij, we have

• I is strictly decreasing with all of its entries being odd.
• ϕ(i1) ≤ · · · ≤ ϕ(ir).
• For all j ∈ {2, . . . , r} we have ψ(ij) = ψ(ij−1)− 1.
• If i0 is non-spike, then we have ψ(i1) = ψ(i0)− 1.

Here, k ∈ N is called spike if k = 2t − 1 for some t > 0.

Our next observation completely resolved the case when i0 is spike.

Lemma 4.3. (i) Suppose I is an A-annihilated sequence such that i0 = 2t − 1 for
some t > 0. Then, I = (2t − 1).
(ii) Suppose I = (i1, . . . , ir) is an A-annihilated sequence so that ij is a spike for
some j. Then, j = r.

So far, our results tell us that if we are given ij then the binary expansion of ij+1

is somehow determined by that of ij . The bottom line is that ij+1 inherits some
part of the binary expansion of ij but with a shift to the right, up to allowable 0s
that are possible to choose by the algorithm. Hence, it suffices to clarify what 0s
are allowable. Our next result, tells us which 0s should not be chosen, informally
introducing forbidden 0s, opposite to which we have allowable 0s in our algorithm.

Lemma 4.4. Suppose n =
∑ψ(n)
i=1 ni2

i is a positive integer where ni ∈ {0, 1}.
(i) If n0 = 0 or n1 = 0 then in either case, we have a forbidden 0.
(ii) For any positive integer n, nϕ(n) = 0 is a forbidden 0.
(iii) If n is even then ϕ(n/2) + 1 corresponds to a forbidden 0.
(iv) Let n be even and t be the least positive integer such that for all ϕ(n/2) + 1 <
j < t− 1 we have nj = 0 and nt = 1. Then, for any such j, nj = 0 is a forbidden
0.
(v) If m is not a spike then ψ(n) corresponds to a forbidden 0.

Finally, we have our main constructive result by which we mean it allows to find
the building blocks of our algorithm. We have the following.

Theorem 4.5. Assume m and n are positive integers with binary expansions m =∑
jmj2

j and n =
∑
j nj2

j. If (i) For all i ≥ ϕ(m) we have ni+1 = mi; (ii)

ϕ(n) ≤ ϕ(m) such that ϕ(n) = ϕ(m) if and only if nϕ(m)+1 = 0 and ϕ(n) > 0
and ϕ(n) < ϕ(m) if and only if there exists 0 < j < ϕ(m) such that nj = 0 and
nϕ(m) = 1 and nϕ(m)+1 = 0.
The converse also does hold, that is if the above conditions are satisfied then

0 < 2m− n < 2ϕ(m).

Our algorithm now easily follows by applying this theorem iteratively.
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Example 4.6. Let i0 = 33 and r = 3. For the binary expansion of 33 given by

33 :

B︷︸︸︷
0 1

B︷︸︸︷
000 01

we have the above ‘blocks’ of allowable 0s. Here, the most left 0 corresponds to
ψ(33) is an allowable 0. According to choices of allowable 0s we will have just two
cases.

i0 : 0 1 0 0 0 0 1
i1 : 0 0 1 0 0 0 1
i2 : 0 0 0 1 0 0 1
i3 : 0 0 0 0 1 0 1

i0 : 0 1 0 0 0 0 1
i1 : 0 0 1 0 0 0 1
i2 : 0 0 0 1 0 0 1
i3 : 0 0 0 0 1 1 1
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Abstract. In this talk we prove that a topological fundamental groupoid
(equipped with the Lasso topology) of a given space is Hausdorff when its
Spanier group is trivial.
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1. Introduction

1.1. Motivation. Virk and Zastrow [9] have reviewed the existing topologies on
the fundamental group and have studied their generalizations to the universal path
space. Since fundamental groupoids are generalizations of universal path spaces and
fundamental groups, these generalizations can be studied for topological groupoids.

R. Brown and G. Danesh-Naruie were the first and only ones that have defined a
topology on a quotient of the fundamental groupoid so that it became a topological
groupoid when the given space X is locally path connected and semilocally simply
connected space [4].

Pakdaman and Shahini [7] equipped the fundamental groupoid of a locally path
connected space X with a topology, named Lasso topology in which it can be
considered as a generalization of the topological fundamental group.

At first, we show that for a given space X and every x ∈ X, πl
1(X,x) is Hausdorff

if πsp
1 (X,x) = {ex}. Then we use this to prove that the topological fundamental

groupoid of Hausdorff spaces is Hausdorff if their Spanier groups are trivial.

1.2. preliminaries. Throughout this paper, all spaces are connected and locally
path connected. I denotes the closed unit interval [0, 1]. If α : I −→ X is a path
from x0 = α(0) to x1 = α(1), then α−1 defined by α−1(t) = α(1− t) is the inverse
path of α from x1 to x0. For x ∈ X, cx is the constant path at x.
If α, β : I −→ X are two paths with α(1) = β(0), then α ∗ β denotes the usual
concatenation of the two paths. Also, all homotopies between paths are relative to
end points.

Definition 1.1. If U is an open cover of X, consider the subgroup of π1(X,x)
consisting of the homotopy classes of loops that can be represented by a product of
the following type.

n∏
j=1

ujvju
−1
j ,
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where the uj’s are arbitrary paths starting at the base point x and each vj is a loop
inside one of the neighborhoods Ui ∈ U . This group is called the Spanier group
with respect to U , denoted by π(U , x) [8, 5] and the intersection of all the Spanier
groups with respect to open covers is called Spanier group of X and is denoted by
πsp
1 (X,x).

Definition 1.2 ([6]). A groupoid is a small category in which every arrow is in-
vertible, i.e. a groupoid G over G0 consists of a set of arrows G and a set of objects
G0, together with the following five structure maps:
S : G −→ G0, called the source map,
T : G −→ G0, called the target map,
1 : G0 −→ G;x 7→ 1x, called the unit map,
i : G −→ G; a 7−→ a−1, called the inverse map,
m : G2 −→ G; (a; b) 7→ m(a; b) = ab, called the composition map, where G2 denotes
the set of composable arrows: G2 = {(a; b) ∈ G×G| S(b) = T (a)}.

These maps satisfy the following conditions:
i) S(ab) = S(a) and T (ab) = T (b) for all (a; b) ∈ G2,
ii) a(bc) = (ab)c for all a, b, c ∈ G such that S(b) = T (a) and S(c) = T (b),
iii) S(1x) = T (1x) = x for all x ∈ G0,
iv) a1T (a) = a and 1S(a)a = a for all a ∈ G,

v) each a ∈ G has a two-sided inverse a−1 such that S(a−1) = T (a), T (a−1) = S(a)
and aa−1 = 1S(a); a−1a = 1T (a).

Elements of G0 are called objects of the groupoid G and elements of G are called
arrows. The arrow 1x corresponding to an object x ∈ G0 is called the identity
corresponding to x. We denote the set of arrows from x to y by G(x, y) and, in
particular, G(x) := G(x, x) is called the object group (or vertex group) at x.

Fundamental groupoid of X is a category in which the set of morphisms contains
homotopy classes of paths in X, denoted by πX and has the set X as its set of
objects. We will use πX for the entire category. For any x, y ∈ X the set πX(x, y)
is the set of homotopy classes of paths in X from x to y. Composition of morphisms
[α], [β] is [α ∗ β] and the identity in πX(x, x) is the ex = [cx]. We can consider the
object group at x, πX(x), as the well-known fundamental group π1(X,x).

Definition 1.3. A topological groupoid is a groupoid G together with topologies
on G and G0 such that the structure maps are continuous [6].

Let U be an open cover of a given space X and for x, y ∈ X, let [α] ∈ πX(x, y).
If V , W ∈ U are open neighborhoods of x, y, respectively. Then

N([α],U , V,W ) :=

{
[β] ∈ πX | β ≃ γ ∗ µ ∗ α ∗ µ′ ∗ λ, for somγ : I → V, λ : I → W

, [µ] ∈ π1(U , x), [µ′] ∈ π1(U , y)
}
.

The family{
N([α],U , V,W )

∣∣ U is an open cover ofX;V,W ∈ U , [α] ∈ πX(x, y), x ∈ V, y ∈ W

}
form a basis for a topology on πX [7]. The topology that is generated by this
basis, is called Lasso topology. For a given topological space X, by πlX we
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mean the fundamental groupoid πX equipped with the Lasso topology on the set
of morphisms and original topology on X, as the object set.

Theorem 1.4 ([7] ). Let X be a locally path connected topological space. Then πlX
is a topological groupoid.

2. Main results

Lemma 2.1. Let G be a topological group with e as the identity element. Then G
is a Hausdorff space if and only if {e} is closed in G.

Proof. Let G be a Hausdorff space. Since every T2 space is T1, {e} is closed.
Conversely, let {e} be closed in G. Consider the continuous map f : G × G → G
defined by f(g, h) = gh−1. Since the diagnal subset f−1(e) of G×G is closed, G is
Hausdorff. �
Lemma 2.2. Let X be a topological space and x ∈ X. If the fundamental group is
endowed with the Lasso topology, then πsp

1 (X,x) = {ex}.

Proof. Let [α] ∈ πsp
1 (X,x), U be an open cover of the topological space X and

O := N([α],U) be a basic open neighborhood of [α]. Since [α] ∈ πsp
1 (X,x), for every

open cover U ofX, [α], [α]−1 ∈ π(U , x). Thus [α]∗[α]−1 = [α∗α−1] = [cx] = ex ∈ O.
Therefore O ∩ {ex} ̸= ∅ and the intersection of every basic open neighborhood of

[α] with {ex} is nonempty, i.e. [α] ∈ {ex}.
Conversely, if [γ] ∈ {ex}, then for every basic open neighborhood N([γ],U) of

[γ], N([γ],U) ∩ {ex} ̸= ∅. Thus ex ∈ N([γ],U) and for some [β] ∈ π(U , x) we have
Cx ≃ γ∗β which implies that ex = [γ]∗[β]. Obviously γ is a loop based at x, thus for
every open cover U of X, [γ] = ex ∗ [β−1] ∈ π(U , x) and hence [γ] ∈ πsp

1 (X,x). �
Corollary 2.3. For every space X and every x ∈ X, πl

1(X,x) is Hausdorff if
πsp
1 (X,x) = {ex}.

Proof. By Lemma 2.2, we have {ex} = {ex}, so {ex} is closed in πl
1(X,x). Then

Lemma 2.1 follows that πl
1(X,x) is Hausdorff. �

It seems that by the condition πsp
1 (X,x) = {ex} on the Hausdorff space X, it can

be proved that the fundamental groupoid is also Hausdorff by the Lasso topology.
We prove this claim in the next theorem.

Theorem 2.4. Let X be a Hausdorff space and x ∈ X. If πsp
1 (X,x) = {ex}, then

πlX is Hausdorff.

Proof. Let [α] ̸= [β] ∈ πlX.
(i) If α(0) ̸= β(0), then there are open neighborhoods U and V of α(0) and β(0)

respectively, such that U ∩V = ∅. Let U ′ be an open cover of the topological space
X and U := U ′ ∪ {U, V }. If W and W ′ are elements of U containing α(0) and β(0)
respectively, then O := N([α],U , U,W ) and O′ := N([β],U , V,W ′) are basic open
neighborhoods of [α] and [β] respectively. We show that O ∩O′ = ∅.

Let [λ] and [γ] be arbitrary elements of O and O′ respectively , then λ(0) ∈ U
and γ(0) ∈ V . Since U ∩ V = ∅, we have [λ] ̸= [γ] and hence O ∩ O′ = ∅. If
α(1) ̸= β(1), by a similar proof we have O ∩O′ = ∅.

(ii) α(0) = β(0) = x, α(1) = β(1) = y, x ̸= y.
Let U ′ be an arbitrary open cover of the topological space X, U and V be open

neighborhoods in X containing x and y respectively, and U ′ and V ′ be elements
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of U ′ contaning x and y respectively. Let U ′′ = U ′ ∩ U and V ′′ = V ′ ∩ V . Now
U := U ′ ∪ {U ′′, V ′′} is an open cover of X such that U ≼ U ′. Suppose that
O := N([α],U , U ′′, V ′′) and O′ := N([β],U , U ′′, V ′′) are basic neighborhoods of [α]
and [β]. we show that O ∩ O′ = ∅. By contradiction, suppose that O ∩ O′ ̸= ∅,
then O = O′, and hence [β] ∈ O′ = O. Therefore β ≃ λ ∗ µ ∗ α ∗ µ′ ∗ λ′ where λ
and λ′ are paths in open neighborhoods U ′′ and V ′′ respectively, [µ] ∈ π1(U , α(0))
and [µ′′] ∈ π1(U , α(1)). By the hypothesis λ(0) = β(0) = α(0) = x = λ(1)
and λ′(1) = β(1) = α(1) = y = λ′(0). Thus λ and λ′ are loops in U ′′ and V ′′

respectively, and we have [λ ∗ µ] ∈ π(U , x) and [µ′′ ∗ λ′′] ∈ π1(U , y). Obviously

β ∗ α−1 ≃ λ ∗ µ ∗ α ∗ µ′′ ∗ λ′′ ∗ α−1.

Since [α ∗ (µ′ ∗ λ′′) ∗ α−1] ∈ π(U , x), [β ∗ α−1] ∈ π(U , x) ≤ π1(U ′, x). But U ′ is
an arbitrary open cover of X which implies that [β ∗ α−1] ∈ πsp

1 (X,x). Therefore
[β ∗ α−1] = ex i.e. β ≃ α, which is a contradiction. Thus O ∩O′ = ∅.

(iii) if α(0) = β(0) = x and α(1) = β(1) = x, then [α] ̸= [β] ∈ πlX(x, x). The
proof is obvious by propositions 2.3. �
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Abstract. The notions of linear topology and the completion process in
abelian groups are recalled. In particular, we discuss some special topologies
defined over abelian groups with various set of neighborhoods about 0.
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1. Introduction

Throughout this talk all groups are abelian with addition as a group operation.
In the theory of abelian groups, topologies can be introduced in various ways which
are natural in one sense or another. The importance of certain topologies will
be evident from subsequent developments, especially when completeness will be
discussed. In this talk the notions of linear topology and the completion process
in abelian groups are recalled. In particular, we discuss some special topologies
defined over abelian groups with various set of neighborhoods about 0. A good
reference about the undefined notions is [1].

2. Main results

In this section we give the main notions and results concerning the linear topolo-
gies defined over abelian groups. Given an abelian group A, the first Ulm subgroup
of A is denoted by A1 and is defined as A1 = ∩n∈NnA.

Definition 2.1. Let A be an abelian group. The set of all subgroups of A is partially
ordered under the inclusion relation. It is a lattice, where B ∩C and B+C are the
lattice operations ”inf” and ”sup,” respectively, for subgroups B and C of A. This
lattice L(A) has a minimum and maximum element; O and A.

Definition 2.2. By a filtration of a set X of cardinality κ we mean a family
{Xα}α≤κ of subsets of X such that the following holds.

(1) α ≤ β implies that Xα ⊆ Xβ ;
(2) | Xα |< κ for all α < κ;
(3) Xβ = ∪α<βXα whenever β is a limit ordinal;
(4) X = ∪α<κXα.

Definition 2.3. A filter D on a set X is a set of subsets of X such that of subsets
of X such that the following holds.

(1) ∅ /∈ D, X ∈ D;
(2) if Y ∈ D and Y ⊆ Z ⊆ X, then Z ∈ D; and
(3) U, V ∈ D implies U ∩ V ∈ D.
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The most important topology on abelian groups to be considered are the linear
topologies in which there is a base (fundamental system) of neighborhoods about 0
which consists of subgroups such that all the cosets of these subgroups form a base
of open sets for the topology. A more formal definition of linear topologies cab be
given as follows.

Definition 2.4. Let u be a filter in the lattice L(A) of all subgroups of A. u
defines a topology on A, if we declare the set of subgroups Uinu to be a base of
open neighborhoods about 0, and for every a ∈ A, the cosets a+U(U ∈ u) as a base
of open neighborhoods of a. We observe that all open sets will be unions of cosets
a + U with a ∈ A and U ∈ u. The continuity of the group operations is obvious.
Thus A is always a group operation under the arising topology, which may be called
the u-topology of A; (A,u) will denote A as a topological group equipped with the
u-topology.

The following simple facts on u-topologies are deduced easily.

Proposition 2.5. Let A be an abelian group. Then we have the following state-
ments.

(1) The u-topology on A is discrete exactly if {0} ∈ u, indiscrete if u = A,
Hausdorff if and only if ∩U∈uU = 0.

(2) Open subgroups are closed.
(3) If the u-topology of A is Hausdorff, then it makes A into a 0-dimensional

topological group.
(4) The closure of a subgroup B of A in the u-topology of A is given by the

formula B̄ = ∩U∈u(B + U).

Proof. See [1, Page 36]. �
The following special topologies are significant.

Proposition 2.6. Let A be an abelian group. Then we have the following state-
ments.

(1) The Z-adic topology on a group A is defined by letting {nA : n ∈ N} be
a base of neighborhoods about 0. This is a u-topology, where u consists of
all U ≤ A such that A/U is a bounded group. This topology is Hausdorff
if and only if the first Ulm subgroup A1 vanishes. A subgroup G of A is
closed exactly if the first Ulm subgroup of A/G is 0.

(2) In the p-adic topology (for a prime p) the subgroups pkA(k < ω) are declared
to form a base of neighborhoods about 0. This is likewise a u-topology, with
u consisting of all U ≤ A such that A/U is a bounded p-group.

(3) In order to define the P̈ rufer topology, we choose the filter u consist of all
U ≤ A such that A/U satisfies the minimum condition on subgroups. This
a Hausdorff topology in which all subgroups are closed.

(4) In the finite index topology, the subgroups of finite indices constitute a base
of neighborhoods about 0; equivalently, u consists of the subgroups of finite
indices in A. This is coarser than both the Z-adic and the P̈ rufer topologies.

Proof. See [1, Page 37]. �
Example 2.7. The multiplication group T of complex numbers of absolute value
1, and the additive group R of reals are usually viewed as being equipped with the
interval topology (which is not a linear topology).
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We need the following definitions.

Definition 2.8. Assume that a linear topology is defined on the group A in terms of
a filter u in the lattice L(A) of all subgroups of A. The subgroups U ∈ u form a base
of open neighborhoods about 0; we label them by a directed index set I, so that i ≤ j
for for i, j ∈ I means that Uj ≤ Ui. Thus, I as a (directed) poset is dual-isomorphic
to a subset of u (which has the natural order relation by inclusion).

Definition 2.9. By a net in A we mean a set {ai}i∈I of elements in A, indexed
always by I. A net is said to converge to a limit a ∈ A if to every i ∈ I there is a
j ∈ I such that ak − a ∈ Ui for all k ≥ j.

Definition 2.10. A net {ai}i∈I is a Cauchy net if to any given i ∈ I, there is a
j ∈ I such that ak − al ∈ Ui for all k, l ≥ j.

Definition 2.11. A net {ai}i∈I is neat if for every i ∈ I, the relation ak − ai ∈ Ui

for all k ≥ i (i.e., j = i can be chosen).

Definition 2.12. Let A be an abelian group. Then A is said to be complete in a
topology if it is Hausdorff, and every (neat) Cauchy net in A has a limit in A.

Definition 2.13. Assume {Ai : i ∈ I} is a collection of groups, indexed by a
poset I, and for each pair i, j ∈ I of indices with i ≤ j there is given a connecting
homomorphism πj

i : Aj → Ai such that

(1) πi
i is the identity map of Ai for all i ∈ I; and

(2) i ≤ j ≤ k in I, then πj
i π

k
j = πk

i .

In this case u = {Ai(i ∈ I);πj
i } is called an inverse system. By the (inverse) limit

of this system is meant a group A∗ such that

(1) there are maps πi : A
∗ → Ai such that πi = πj

i πj for all i ≤ j; and

(2) If G is any group with maps ρi : G → Ai(i ∈ I) subject to ρi = ρjiρj for all
i ≤ j, then is a unique map ϕ : G → A∗ satisfying ρi = πiϕ for all i ∈ I.

There are two important completion processes in the completion of groups in
the linear topology; Cauchy nets and inverse limits. The second method fits better
in linear topologies.

Proposition 2.14. Let A be a group with linear topology (not necessarily Haus-
dorff), and {Ui : i ∈ I} a base of neighborhoods about 0, with I a directed index set:
i ≤ j in I if and only if Ui ≥ Uj . Define the groups Ci = A/Ui, and for j ≥ i in I,

and the homomorphisms πj
i : Cj → Ci via πj

i : a + Uj → a + Ui. The limit of the

arising inverse system C = {Ci(i ∈ I) : πj
i } will be denoted by Ǎ : it is furnished

with the topology inherited from the product topology of
∏

Ci. Thus, if πi denotes
the ith projection

∏
Ci → Ci, then a subbase of neighborhoods about 0 in Ǎ is given

by the subgroups Ǔi = Ǎ ∩ π−1
i 0. Evidently, θA : a 7−→ (. . . , a + Ui, . . .) ∈ Ǎ is a

homomorphism which is continuous and open, and θAUi = θAA ∩ Ǔ holds for each
i ∈ I. It is clear that ker θA is the intersection of all Ui.

Proof. See [1, Page 37]. �
Lemma 2.15. For every group with a linear topology, the group Ǎ is complete in
the induced topology.

Proof. See [1, Lemma 7.5.]. �
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We observe that the completion is always Hausdorff, and θA : A → Ǎ is monic
if and only if A had a Hausdorff topology to start with.

Lemma 2.16. If ϕ is a continuous homomorphism of the group A into a complete
group C, then there is a unique continuous homomorphism ϕ̌ : Ǎ → C such that
ϕ̌θA = ϕ.

Proof. See [1, Lemma 7.6.]. �
From this lemma it also follows that the completion Ǎ of A is unique up to

topological isomorphism. Moreover, θA : A → Ǎ is a natural map.

Theorem 2.17. Let A be any group.

(1) Its completion in the Z-adic (p-adic) topology carries the Z-adic (p-adic)
topology.

(2) Its completion in the finite index topology has a compact topology.
(3) Its completion in the Prüfer topology carries a linearly compact topology.

Proof. See [1, Theorem 7.7]. �
Example 2.18. Let p be a prime, and Z(p) the ring of rational numbers whose de-
nominators are prime to p. The non-zero ideals in Z(p) are principal ideals generated

by pk with k = 0, 1, . . . . If the set of these ideals pkZ(p) is declared to be fundamental
system of neighborhoods about 0, then Z(p) becomes a (Hausdorff) topological ring,
and we may form its completion Jp in this topology. We observe that Jp is a ring,
called the ring of p-adic integers, whose non-zero ideals pkJp with k = 0, 1, . . . , and
which is complete in the topology in the topology defined by its ideals. The symbol
Jp denotes both the ring and the group of p-adic integers. Moreover, Q∗

p denotes
the field of quotients of Jp (and its additive group).
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Abstract. Let m and n be two positive integers such that m < n. Let Qn

be the symplectic quasi-projective space of rank n. In this article, localise at
an odd prime p, we will study the order of the Samelson product Qm ∧Qn →
Sp(n).
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1. Introduction

Let H be a topological group. The commutator of H is the map C : H×H → H
defined by sending (a, b) to aba−1b−1. This is trivial when restricted to H ∨H so
induces a map c : H ∧ H → H. The Samelson product of two maps α : X → H
and β : Y → H denoted by ⟨α, β⟩ is defined to be the composition

X ∧ Y
α∧β−→ H ∧H

c−→ H.

Let G be a simple compact connected Lie group. The calculation of Samelson prod-
ucts plays an important role in classifying the homotopy types of gauge groups of
principal G-bundles, and they are fundamental in studying the homotopy commu-
tativity of Lie groups. Samelson products have been studied extensively for the
classical groups. Let Qm be the symplectic quasi-projective space of rank m, we
denote the inclusion Qm → Sp(n) by εm,n, where m ≤ n. Let m and n two integers
such that m < n. In this article, we will study the order of the Samelson product
⟨εm,n, εn,n⟩ : Qm ∧ Qn → Sp(n). Let d be the order of the Samelson product
⟨εm,n, εn,n⟩.

Theorem 1.1. Localise at an odd prime p. If m = 2 then d is 32 · 7 if n = 3 and
is 3 · 5 · 11 if n = 4.

2. Preliminaries and Notations

Let X be a CW -complex. We denote Sp(∞)/Sp(n) by Xn and [X,Sp(n)] by
Spn(X). Recall [2], that the symplectic quasi projective spaces Qn of rank n for
n ≤ 3, have the following cellular structures

Q1 = S3, Q2 = S3 ∪v1 e
7, Q3 = S3 ∪v1 e

7 ∪v2 e
11,

where v1 is a generator of π6(S
3) and v2 : S10 → Q2 is some map. There

is an inclusion εn,n : Qn → Sp(n) that induces an isomorphism in homology

Λ(H̃∗(Qn)) ∼= H∗(Sp(n)). Consider the fibre sequence

ΩSp(∞)
Ωπ−→ ΩXn

δ−→ Sp(n)
j−→ Sp(∞)

π−→ Xn,(2.1)
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where π : Sp(∞) → Xn is the projection map. Applying the functor [X,−] to
fibration (2.1), we get the following exact sequence.

K̃Sp
−2

(X)
(Ωπ)∗−→ [X,ΩXn]

δ∗−→ Spn(X)
j∗−→ K̃Sp

−1
(X)

π∗−→(2.2)

Let γ be the commutator map Sp(n) ∧ Sp(n) → Sp(n). Since Sp(∞) is an infinite
loop space it is homotopy commutative. Therefore γ composed to Sp(∞) is null
homotopic, implying that there is a lift γ̃ : Sp(n)∧Sp(n) → ΩXn such that δ◦γ̃ ≃ γ.
Therefore we get the following relation

⟨εm,n, εn,n⟩ = δ∗(γ̃ ◦ (εm,n ∧ εn,n)).(2.3)

We denote the equivalence class of γ̃ ◦ (εm,n ∧ εn,n) in the cokernel of (Ωπ)∗ by
[γ̃ ◦ (εm,n ∧ εn,n)] and the order of an element x of a group by |x|. Then by exact
sequence (2.2) and relation (2.3), we have

|⟨εm,n, εn,n⟩| = |[γ̃ ◦ (εm,n ∧ εn,n)]|.
Therefore we will calculate |[γ̃ ◦ (εm,n ∧ εn,n)]|.
We use the same symbol c′ for the inclusion Sp(n) ↪→ U(2n) ↪→ U(2n+1), the com-
plexifications BSp(n) → BU(2n + 1) and BSp(∞) → BU(∞). Let ρ : [X,ΩY ] ∼=
[ΣX,Y ] be the adjoint. The following lemma has important role in the calculation
of the order of the Samelson products in Sp(n) [1].

Lemma 2.1. Let X be a space. For a map α : Σ2X → BSp(∞),

(Ωπ ◦ ρ2α)∗(b4n+4k−2) = (−1)n+k(2n+ 2k − 1)!Σ−2ch2n+2k(c
′(α)),

where Σ is the suspension isomorphism and chi is the 2i Chern character.

3. The Samelson product ⟨ε2,n, εn,n⟩

Put X = Q2 ∧Qn. Define a map

λ : [X,ΩXn] → H4n+2(X)⊕H4n+6(X) ∼=
⊕

1≤i≤3

Zi,

by λ(α) = (α∗(b4n+2), α
∗(b4n+6)), where Zi = Z, α ∈ [X,ΩXn], b4n+2 and b4n+6 are

generators of H4n+2(ΩXn) ∼= H4n+6(ΩXn) ∼= Z. Note that λ is a homomorphism
of groups that is monic. We denote the free abelian group with a basis e1, e2, . . .,
by Z{e1, e2, . . .}. Let α1 : ΣQ2 → BSp(∞) be the adjoint of the composition of the
inclusions Q2 → Sp(2) → Sp(∞) and α2 : ΣQ2 → BSp(∞) be the pinch map of
the bottom cell q : ΣQ2 → S8 followed by a generator of π8(BSp(∞)) ∼= Z. Note

that K̃Sp(ΣQ2) is a free abelian group with a basis α1, α2, that is K̃Sp(ΣQ2) =
Z{α1, α2}. Then we havech(c′(α1)) = Σy3 − 1

6Σy7 and ch(c′(α2)) = −2Σy7. Let

tn : Qn → ΣCP 2n−1 be the restriction of c′ : Sp(n) → SU(2n) to their quasi-

projective spaces and η ∈ K̃(CP 2n−1) be the Hopf bundle minus the trivial line
bundle. Put βn,j = tn

∗(Σ2ηj), where j = 1, 3, . . . , 2n − 1. By [3], we have the
following lemma.

Lemma 3.1. K̃(ΣQn) = Z{βn,j , j = 1, 3, . . . , 2n− 1}.

Put θi,n,j = q(c′(αi) ∧ βn,j) ∈ K̃Sp(ΣQ2 ∧ ΣQn), where q : K → KSp is the
quaternionization. We denote Σua ⊗ Σub by ua,b.

Lemma 3.2. K̃Sp
−2

(X) = Z{θi,n,j , i = 1, 2, j = 1, 3, . . . , 2n− 1}.
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3.1. The case n=3. The Chern characters of θi,3,j , are given as

ch(c′(θ1,3,1)) = −2u3,3 +
1

3
u3,7 −

1

60
u3,11 +

1

3
u7,3 −

1

18
u7,7 +

1

360
u7,11,

ch(c′(θ1,3,3)) = 2u3,7 −
5

2
u3,11 −

1

3
u7,7 +

5

12
u7,11,

...

ch(c′(θ2,3,5)) = 4u7,11.

Lemma 3.3. For i = 1, 2 and j = 1, 3, 5, Im λ◦ (Ωπ)∗ is generated by αi,3,j, where

α1,3,1 = −(
2 · 7!
5!

,
7!

3 · 3!
,

9!

3 · 5!
), α2,3,1 = −(0,

2 · 7!
3

,
9!

30
),

α1,3,3 = −(
5 · 7!
2

,
7!

3
,
5 · 9!
12

), α2,3,3 = −(0, 4 · 7!, 5 · 9!),

α1,3,5 = −(2 · 7!, 0, 9!
3
), α2,3,5 = (0, 0,−4 · 9!).

Proof. According to the definition the map of λ, we have

λ ◦ (Ωπ)∗(θ1,3,1) = ((Ωπ ◦ ρ2θ1,3,1)∗(b14), (Ωπ ◦ ρ2θ1,3,1)∗(b18)),
By Lemma 2.1, the calculation of the components is as follows:

(Ωπ ◦ ρ2θ1,3,1)∗(b14) = 7!Σ−2ch8(c
′(θ1,3,1)) = 7!Σ−2(− 1

60
u3,11 −

1

18
u7,7),

(Ωπ ◦ ρ2θ1,3,1)∗(b18) = −9!Σ−2ch10(c
′(θ1,3,1)) = −9!Σ−2(

1

360
u7,11).

Therefore α1,3,1 = λ ◦ (Ωπ)∗(θ1,3,1) = −(
2 · 7!
5!

,
7!

3 · 3!
,

9!

3 · 5!
). Similarly we obtain

other generators αi,3,j . �

Proposition 3.4. |[γ̃ ◦ (ε2,3 ∧ ε3,3)]| = 32 · 7.

3.2. The case n=4. The Chern characters of θi,4,j are given as

ch(c′(θ1,4,1)) = ch(c′(θ1,3,1)) +
2

7!
u3,15 −

1

3 · 7!
u7,15,

ch(c′(θ1,4,3)) = ch(c′(θ1,3,3)) +
43

60
u3,15 −

43

3 · 5!
u7,15,

...

ch(c′(θ2,4,7)) = −4u7,15.

Lemma 3.5. for i = 1, 2 and j = 1, 3, 5, 7, Im λ ◦ (Ωπ)∗ is generated by αi,4,j,
where

α1,4,1 = −(
2 · 9!
7!

,
9!

3 · 5!
,
11!

3 · 7!
), α2,4,1 = −(0,

9!

30
,
4 · 11!
7!

),

α1,4,3 = −(
43 · 9!
60

,
5 · 9!
12

,
43 · 11!
3 · 5!

), α2,4,3 = −(0, 5 · 9!, 43 · 11!
30

),

α1,4,5 = −(
20 · 9!
3

,
9!

3
,
10 · 11!

9
), α2,4,5 = −(0, 4 · 9!, 40 · 11!

3
),

α1,4,7 = −(2 · 9!, 0, 11!
3

), α2,4,7 = (0, 0,−4 · 11!).



184 SAJJAD MOHAMMADI

Arguing as for Proposition 3.4 we obtain the following proposition.

Proposition 3.6. |[γ̃ ◦ (ε2,4 ∧ ε4,4)]| = 3 · 5 · 11.

Proof of Theorems 1.1
By Propositions 3.4, and 3.6 we get the Theorem 1.1.
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1. Introduction

Let G be a group-like space and X a finite complex. The homotopy set [X,G]
has a natural group structure inherited from G by the point-wise multiplication. In
recent years, the group [X,G] has been studied and there are many applications in
homotopy theory, special in the homotopy commutativity and homotopy nilpotency.
For a compact connected Lie group G, we call a group of the self homotopy set
[G,G] the self-homotopy group and is an interesting object in homotopy theory.
The self-homotopy group of G has been studied extensively. In recent years, the
self-homotopy groups of Lie groups are studied by topologists and good results
have been obtained [1, 4, 5]. In [3], Kishimoto, Kono and Tsutaya study the self-
homotopy group of Sp(3) localized at p ≥ 5. The purpose of this article is to study
the self-homotopy groups of SU(3) localized at primes 3. In this article, we denote
by −(p) the localization at a prime p in the sense of Bousfield and Kan [2].

2. Preliminaries and Notations

In this section, we will study Unstable K-theory where all of spaces localized at
odd prime 3. For a prime 3, we denote the 3-localization of a nilpotent group G by
G(3). Also we denote the 3-localization of spaces by the same notation. Note that,
for a CW -complex X, [X,U(3)](3) = [X,U(3)(3)]. Let X be a CW -complex such
that dim X ≤ 8. Also, let H∗(X,Z) be a free Z(3)-module. We denote the infinite
Stiefel manifold U(∞)/U(3) by W3. Let p : U(∞) →W3 is the projection map. By
applying [X, ] to the fibration sequence

ΩU(∞)
Ωp−→ ΩW3

δ−→ U(3)
j−→ U(∞)

p−→W3,

we obtain the exact sequence

[X,ΩU(∞)]
(Ωp)∗−→ [X,ΩW3]

δ∗−→ [X,U(3)]
j∗−→ [X,U(∞)]

p∗−→ [X,W3].

By the Bott map β : BU(∞)
≃−→ ΩU(∞), we have natural isomorphisms

[X,ΩU(∞)] ∼= [X,BU(∞)] ∼= K̃0(X), [X,U(∞)] ∼= K̃1(X).

Thus we get the following exact sequence.

K̃0(X)
(Ωp)∗β∗−→ [X,ΩW3]

δ∗−→ [X,U(3)]
j∗−→ K̃1(X)

p∗−→ [X,W3].(2.1)
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It is well known that the cohomologies of BU(∞) and U(∞) as algebras are given
respectively by H∗(BU(∞)) = Z[c1, c2, . . .], H∗(U(∞)) = Λ(x1, x3, . . .), where
x2i−1 = σ(ci), also ci is the universal i-th Chern class and σ is the cohomology sus-
pension. Localized at odd prime 3, we rewrite exact sequence (2.1) as the following
theorem (see [3]).

Theorem 2.1. Localized at odd prime 3, there is an exact sequence of groups

K̃0(X)(3)
ψ−→ Im(λ)

δ̄−→ [X,U(3)](3)
(j∗)(3)−→ K̃1(X)(3),

such that for ζ ∈ K̃0(X)(3) we have ψ(ζ) = 3!ch3(ζ)⊕ 4!ch4(ζ), where chi(ζ) is the
2i-th part of ch(ζ).

Let α1, α2 ∈ [X,U(3)](3). The commutator [α1, α2] in the group [X,U(3)](3) was
described explicitly in [3].

Theorem 2.2. The commutator [α1, α2] ∈ [X,U(3)](3) is equal to

δ̄

( 4⊕
k=3

∑
i+j=k−1,
1≤i,j≤3

α1
∗(x2i+1) ∪ α2

∗(x2j+1)

)
.

Therefore by Theorems 2.1 and 2.2 we obtain the following corollary that is very
important in the study of self homotopy groups.

Corollary 2.3. There is a central exact sequence

0 → Cokerψ → [X,U(3)](p) → Im(j∗)(3) → 0.

3. self-homotopy groups of SU(3) at prime p = 3

In this section, we will study the Self-homotopy group [SU(3), U(3)] at prime
p = 3. We denote the free abelian group with a basis e1, e2, . . ., by Z{e1, e2, . . .}.
We know that there is a mod 3 decomposition of SU(3) as following

SU(3) ≃(3) S
3 × S5.

For i = 2, 3, let πi : SU(3)(3) → S2i−1
(3) and li : S

2i−1
(3) → SU(3)(3) be the projection

and inclusion maps, respectively. We define the self map ξ3,i of SU(3), as the
following composition

SU(3)(3)
πi−→ S2i−1

(3)

li−→ SU(3)(3).

Now, put ξ′4,i and ξ̄4,i as the following compositions

SU(3)(3)
ξ3,i−→ SU(3)(3) → U(3)(3),

SU(3)(3)
ξ3,i−→ SU(3)(3) → U(3)(3)

j−→ U(∞)(3),

respectively. Note that for i = 2, 3, we have ξ̄3,i ∈ K̃1(SU(3)) with the Chern char-
acter ch(ξ̄3,i) =

1
(i−1)!Σx2i−1. By Corollary 2.3, there is a central exact sequence

0 → Cokerψ → [SU(3), U(3)](3) → Im(j∗)(3) → 0.

So we need to calculate Im(j∗)(3) and Cokerψ . First, we compute the image of
map

(j∗)(3) : [SU(3), U(3)](3) → K̃1(SU(3))(3).
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Note that K̃1(SU(3))(3) is a free Z(3)-module generated by ξ̄3,2, ξ̄3,3. We have the
following lemma.

Lemma 3.1. Im(j∗) is a free Z(3)-module generated by ξ̄3,2, ξ̄3,3.

Now, we compute the Coker of the map ψ : K̃0(SU(3))(3) → Imλ. Consider the
map

λ : [SU(3),ΩW3](3) → H8(SU(3);Z(3)),

where λ(α) = α∗(a8). By [3], we know that the map λ is monic and Im(λ) is

generated by x3x5. Let ϑ = β−1(ξ̄3,2ξ̄3,3). Note that K̃0(SU(3))(3)) is a free Z(3)-
module generated by ϑ, with the Chern character ch(ϑ) = x3x5. According to the
definition of map ψ, we have ψ(ϑ) = 4!ch4(ϑ) = 4!x3x5. Thus localized at odd
prime 3, Im(ψ) is generated by 3x3x5, therefore we get the following lemma.

Lemma 3.2. There is an isomorphism

Cokerψ ∼=
< x3x5 >

< 3x3x5 >
∼= Z3.

By Theorem 2.2, we have that the commutator [ξ′3,2, ξ
′
3,3] in the group [SU(3), U(3)](3)

is equal to δ̄(x3x5). Therefore we get the following theorem.

Theorem 3.3. There is a central exact sequence

0 → Z3 → [SU(3), U(3)](3)
f−→ Z(3) ⊕ Z(3) → 0,

such that the following hold.
(a) : f(ξ′3,2) = (1, 0) and f(ξ′3,3) = (0, 1), respectively.
(b) : Kerf = Z{[ξ′3,2, ξ′3,3]}.

On the other hand, we know that U(3) ≃ S1×SU(3). Now, by homotopy groups
of sphere we have that for i = 3, 5, πi(S

1)(3) = 0. Therefore there is an isomorphism
[SU(3), SU(3)](3) ∼= [SU(3), U(3)](3). Thus we obtain the following theorem.

Theorem 3.4. There is a central exact sequence

0 → Z3 → [SU(3), SU(3)](3)
f−→ Z(3) ⊕ Z(3) → 0,

such that the following hold.
(a) : f(ξ′3,2) = (1, 0) and f(ξ′3,3) = (0, 1), respectively.
(b) : Kerf = Z{[ξ′3,2, ξ′3,3]}.

References

[1] M.A. Arkowitz, H. Oshima, J. Strom, Noncommutativity of the group of self-homotopy classes
of Lie groups, Topology Appl. 25(1) (2002), 87-96.

[2] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture
Notes in Math, Springer-Verlag, Berlin-New York, 304 (1972).

[3] D. Kishimoto, A. Kono, and M. Tsutaya, On Localized Unstable K1-groups and Applications
to Self-homotopy Groups, Canad. Math. Bull. 57(2) (2014), 344-356.

[4] A. Kono, H. Oshima, Commutativity of the group of self-homotopy classes of Lie groups,
Bull. London Math. Soc. 36 (2004), 37-52.

[5] M. Mimura and H. Oshima, Self-homotopy groups of Hopf spaces with at most three cells. J.
Math. Soc. Japan. 51 (1999), 71-92.

Department of Mathematics, Urmia University, Urmia 5756151818, Iran.

E-mail address: sj.mohammadi@urmia.ac.ir



The 12th Seminar on Geometry and Topology

University of Tabriz, 1-2 Mordad 1402, July. 23-24, 2023

POISSON-NIJENHUIS STRUCTURE ON CO-ADJOINT LIE

GROUPOIDS

SHAHAB PAZIRA, GORBANALI HAGHIGHATDOOST, AND REZVANEH AYOUBI

Abstract. Our purpose in this article is to define the compatible Poisson -
Nijenhuis structure of the Co-adjoint orbit Gξ of a Lie groupoid G. That is, we

consider a Poisson-Nijenhuis structure for a Lie groupoid G and by using it,
we calculate the Poisson-Nijenhuis structure corresponding to its Co-adjoint
Lie groupoid. In the end, considering the trivial Lie groupoid as an example,
we obtain the Poisson-Nijenhuis structure for its corresponding Co-adjoint Lie

groupoid.
Key words and phrases: Poisson-Nijenhuis groupoid; Co-adjoint Lie groupoid;

Poisson-Nijenhuis structure.

1. Introduction

We know that the theory of Lie groupoids is extended by the theory of Lie groups.
Also, in the second section of this article, we can recall the notion of a Lie alge-
broid associated with a Lie groupoid. In accord with [4], the notion of tangent Lie
algebroid and cotangent Lie groupoid corresponding to a Lie groupoid is defined.
In the following Das defined multiplicative Poisson-Nijenhuis structures on a Lie
groupoid which extends the notion of symplectic-Nijenhuis groupoid expressed by
Stienon and Xu in [1]. The notion of Poisson groupoid was introduced by Weinstein
[5] as a union of both the Poisson Lie group and the symplectic groupoid. We can
see that the concept of Poisson-Nijenhuis has been studied by Magri and Morosi.
By referring to [2] we saw that the orbits of the Co-adjoint action of a Lie groupoid
are obtained by an action of a Lie groupoid on a dual bundle of the isotropy Lie
algebroid associated with isotropy Lie groupoid of a Lie groupoid. Likewise, there
is a (1,1) - Nijenhuis tensor on a manifold that this manifold together with this
(1,1) - Nijenhuis tensor on itself are a Nijenhuis manifold which these two are a
compatible structure. In other words, it is satisfying in two compatible conditions.
As well as, we can see that for a smooth manifold, there is a 1-vector-valued form or
a (1,1) - tensor on a manifold that if it is with a Nijenhuis torsion zero, then we can
call this 1-form vector-valued is a (1,1) - Nijenhuis tensor. Due to the assumption
of the problem and the mentioned concepts in [1], we have that a Poisson-Nijenhuis
Lie groupoid is include a Poisson groupoid which itself includes a Lie groupoid to-
gether with a Poisson bivector field for which the Schouten bracket is zero and also
a Nijenhuis groupoid.

We only have enough to identify the manifold with the Lie groupoid and therefore
we will obtain that the orbits of the Co-adjoint action of a Lie groupoid together
with a Poisson-Nijenhuis structure are associated with Poisson-Nijenhuis structure
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on a manifold. Finally, we express an example of Lie groupoids in the name of
trivial Lie groupoids [4] and also obtain the Co-adjoint orbit action of trivial Lie
groupoids. Since that based on [2, 4] a trivial groupoid is a Lie groupoid.Then, we
could define a Poisson-Nijenhuis structure for a trivial Lie groupoid. Thereby, we
will show that a trivial Lie groupoid is a Poisson-Nijenhuis Lie groupoid in the last
section.

2. Main results

Definition 2.1. A groupoid which is denoted by G ⇒ M , consists of two sets
G and M together with structural mappings s, t, 1, ι and m, where source map-
ping s : G → M , target mapping t : G −→ M , unit mapping 1 : M −→ G,
inverse mapping ι : G −→ G and multiplication mapping m : G2 −→ G which
G2 = {(g, h) ∈ G×G | s(g) = t(h)} is a subset of G×G.
A Lie groupoid is a groupoid G ⇒ M for which G and M are smooth manifolds,
s, t, 1, ι and m, are differentiable mappings and besides, s, t are differentiable sub-
mersions .

Definition 2.2. A Lie algebroid over a manifold M consists of a vector bundle A
together with a bundle map ρA : A −→ TM and a Lie bracket [ , ]A on the space
of sections Γ(A), satisfying the Leibniz identity

[α, fβ]A = f [α, β]A + LρA(α)(f)β,

for α, β ∈ Γ(A) and all f ∈ C∞(M).

Definition 2.3. A vector field X on G is called vertical if it is vertical with respect
to s, that is, Xg ∈ TgGs(g), for all g ∈ G. We call X right - invariant on G if it is
vertical and Xgh = dRg(Xh), for all (h, g) ∈ G(2).
It is easy to show that Γ(AG) - the space of sections of vector bundle AG can be
identified as the space of the right - invariant field on G. So if we denote the space
of right- invariant vector field on G by

χs
inv(G) =

{
X ∈ Γ(T sG) : Xhg = dRg(Xh), (h, g) ∈ G(2)

}
.

From above we have the space of sections Γ(AG) is isomorphic to the space of
right - invariant vector fields on G, χs

inv(G). On the other hand, the space χs
inv(G)

is a Lie sub-algebra of the Lie algebra χ(G) of a vector field on G concerning
the usual Lie bracket of vector fields. Also, the pull-back of the vector field on
the s−fibers along Rg preserves brackets. So we obtain a new bracket on Γ(AG)
which is uniquely determined. The Lie bracket on AG is the Lie bracket on Γ(AG)
obtained from the Lie bracket on χs

inv(G). The anchor of AG is the differential of
the target mapping β, i.e. ρ = Tt|AG : AG → TM . As a result, we obtain that
AG is a Lie algebroid associated with the Lie groupoid G. Let X be a section of
τ : AG = T sG|M → M , i.e. X ∈ Γ(AG). We consider the right invariant vector

field
−→
X : G → TG,

−→
X (g) = dRg(Xt(g)), where dRg : T s

1t(g)
G → T s

gG.

Definition 2.4. Let G ⇒ M be a Lie groupoid. We define the orbit of the Co-
adjoint action of a Lie groupoid G as follows:

O(ξ) =
{
Ad∗gξ|g ∈ G

}
where ξ is an element of (A∗IG)p. We call O(ξ) Co-adjoint orbit of the Lie groupoid
G.
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Definition 2.5. Let G ⇒ M be a Lie groupoid with a Poisson structure π on
the Lie groupoid G. Then (G, π) is a Poisson groupoid i.e. the Poisson anchor
π♯ : T ∗G −→ TG is a morphism of groupoids.

Definition 2.6. The Poisson structure of the Co-adjoint orbits of a Lie groupoid is
as follows πξ : TGξ −→ TGξ that πξ(ad

∗
Xξ) = ad∗π(X)ξ. where ξ ∈ A∗IG is normal.

Definition 2.7. Let πξ be a Poisson structure corresponding to Co-adjoint Lie
groupoid Gξ. Then, we have

π♯
ξ : T ∗Gξ −→ TGξ , π♯

ξ(γ) = ad∗π♯(α)ξ.

Theorem 2.8. Let (G ⇒ M,π) be a Poisson groupoid. Then (Gξ ⇒ M,πξ) is a
Poisson groupoid.

Definition 2.9. Let NM be a (1, 1)- Nijenhuis tensor on manifold M. Then, we
can also define a (1, 1)- multiplicative Nijenhuis tensor on Gξ in the form of Nξ :
TGξ −→ TGξ for which ad∗Xξ 7−→ ad∗N(X)ξ.

Theorem 2.10. Let (G ⇒ M,N) be a Nijenhuis groupoid. Then
(
Gξ ⇒ M,N

ξ

)
is

a Nijenhuis groupoid.

Definition 2.11. We can also define the dual of Nξ in the form of N∗
ξ : T ∗Gξ −→

T ∗Gξ in which γ 7−→ N∗
ξ (γ) := (Nξ(ad

∗
Xξ))∗ = (ad∗N(X)ξ)

∗.

Theorem 2.12. Let (π,N) be a Poisson-Nijenhuis structure on Lie groupoid. Then
(πξ, Nξ

) is a Poisson-Nijenhuis structure on Co-adjoint Lie groupoid.

Theorem 2.13. Let (G ⇒ M,π,N) be a Poisson - Nijenhuis Lie groupoid. Then
(Gξ, πξ, Nξ) is a Poisson - Nijenhuis Lie groupoid.

Proof. it is proved according to theorems (2.8,2.10,2.12). �
Example 2.14. Let Υ := M × G × M be a trivial Lie groupoid for which M
a Poisson-Nijenhuis manifold and G is a Poisson-Nijenhuis Lie group and g is
a Lie algebra of G and g∗ is a dual of Lie algebra g. As shown in article [3],
Υ = M ×G×M is a Poisson-Nijenhuis groupoid whose Poisson structure is πΥ =
πM ⊕ πG ⊕ πM and Nijenhuis structure is NΥ = NM ⊕NG ⊕NM , which πM is the
Poisson structure of M and πG is also the Poisson structure of G.
In addition, as stated in article [2], the Co-adjoint orbit of a trivial Lie groupoid is

Gξ = O(ξ) = {Ad∗hξ|h ∈ Υ} = {(q, Ad∗bξ
′, q)|b ∈ G, q ∈ M},

for ξ = (q, ξ′, q) ∈ (A∗IΥ)q, ξ
′ ∈ g∗ that is normal. As well as,

πξ : T (M × Gξ′) −→ T (M × Gξ′), ad
∗
X̃
ξ 7−→ πξ(ad

∗
X̃
ξ) := ad∗πΥ(X,V,Y )ξ,

and
π♯
ξ(γ

′) := ad∗
π♯
Υ(α′)

ξ.

On the other hand,

Nξ : T (M × Gξ′) −→ T (M × Gξ′), ad
∗
X̃
ξ 7−→ Nξ(ad

∗
X̃
ξ) := ad∗NΥ(X,V,Y )ξ,

N∗
ξ : T ∗(M × Gξ′) −→ T ∗(M × Gξ′), γ

′ 7−→ N∗
ξ (γ

′) := (Nξ(ad
∗
X̃
ξ))∗ = (ad∗NΥ(X,V,Y )ξ)

∗.
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Abstract. The hyperoctahedral group Hn is known to have two natural lib-
erations H+

n and ON . In this paper, we will study this phenomenon by using

the framework introduced by Wang and Banica and we will present an almost
independent proof of the fact that the quantum isometry group of K+

n (the

n-dimensional quantum hypercube) is H+
n (the non-commutative hyperocta-

hedral group), and at the end, as a toy example, we will study the quantum
isometry group of the d-dimensional lemon in Rd (as a classical compact space),
and its maximal quantum version, and we show that the classical version has
indeed some genuine quantum symmetry and as a result we conclude that the

quantum isometry group QISO+(X) of any classical compact space X has to
be classical.

Key words and phrases: liberation process; quantum permutation group;
quantum isometry group.

1. Introduction

The structure of the usual sphere Sn−1 is intimately related to that of the or-
thogonal group On, and when twisting the sphere the orthogonal group gets twisted
as well, and becomes a quantum group. Quantum groups have been an object of
study for many years now and especially the C∗-algebraic compact quantum groups
(CQG) introduced by Woronowicz possess a very powerful representation theory.
Actions of quantum groups on C∗-algebras dualize the idea of group actions and
describe the symmetries of an object in the non-commutative case; one gets some
kind of “quantum symmetry”. Wang showed in [11] that even classical objects can
have quantum symmetry unseen by restricting to classical groups. For example the
set of n points gives rise to a commutative C∗-algebra but has genuine quantum
symmetry. Its quantum symmetry group is the famous (compact) quantum group
S+
n which is not a group for n ≥ 4 and is infinite dimensional in the later cases. But

allowing arbitrary quantum group actions on compact spaces often ignores too much
information of the compact space; since we are working with C∗-algebras, only the
topology of the space is taken into consideration. In that sense a square and a rec-
tangle have the same quantum symmetry group. Alain Connes defined with the help
of spectral triples, quantum group actions on Riemannian Manifolds that preserve
the differential structure of the manifold. Generalizing this further, Goswami [6],
Banica[1], Bichon and Collins have defined and studied isometric quantum group
actions on classical finite and compact metric spaces discovering for example the
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non-commutative version of the hyperoctahedral group H+
n in search for the quan-

tum isometry group of the n-dimensional hypercube in [4]. Rieffel also introduced
the notion of a non-commutative metric space and Quaegebeur and Sabbe then de-
fined isometric quantum group actions on such non-commutative metric spaces in
[8]. It is not yet clear if the two notions of isometric actions introduced by Goswami
and Quaegebeur-Sabbe respectively are equivalent on classical spaces. Besides what
I said above, there is the idea of non-commuting coordinates which goes back to
Heisenberg. Several theories emerged from Heisenberg’s work, most complete being
Connes’ noncommutative geometry, where the base space is a Riemannian manifold.
I this order, the algebra generated by variables uij with relations making u = (uij)
a unitary matrix was considered by Brown. This algebra has a comultiplication
and a counit, but no antipode (hence the corresponding non-commutative version
Unc
n was a quantum semigroup), hence they didn’t fit into Woronowicz’s axioms,

but with a slight modification they could lead to free quantum groups. The quan-
tum groups O+

n , U
+
n appeared in Wang’s thesis [10]. Then Connes suggested use of

symmetric groups, and the quantum group S+
n was constructed in [11].

The purpose of this paper is to study a new free quantum group which has been
introduced in [4], and is the free analogue of the hyperoctahedral group Hn and
is denoted by H+

n ⊆ S+
2n and satisfies in S+

n ⊂ H+
n ⊂ U+

n . Let us recall that Hn

is the common symmetry group of the cube Kn ⊂ Rn (considered as the metric
space of 2n points or the cubic graph with 2n vertices, n2n−1 edges) and the space
In ⊂ Rn formed by the ±1 points on each axis (also regarded as a graph formed by
n segments, 2n vertices, n edges). According to the quantum algebra theory, the
relations ab = ba between the coordinates x1, . . . , xN of our ambient space RN is
ab = −ba for a ̸= b and almost the same at the matrix level, else than the fact that
we have ab = −ba for a ̸= b on the same row or column of u ∈ MN (R) (let’s call
these new CCR relations, just R) and can be used in order to construct a twisted
analogue of the orthogonal group ON , as abstract spectrum of the universal algebra
C(ON ) = C∗ ((uij)i,j=1,...,N | u = u, ut = u−1,R

)
.

Generally speaking, the structure of ON is quite similar to that of ON , with
the correspondence ON 
 ON being best understood via Schur-Weyl twisting,
or via a cocycle deformation method. One interesting feature of ON , however,
which escapes the philosophy of the above correspondence, is that this appears as
quantum symmetry group of the standard hypercube in RN . This phenomenon
was discovered about 10 years ago, in [4], and has been since the subject of various
investigations. The following key construction is due to Wang [10].

Proposition 1.1. We have a compact quantum group O+
n , defined as

C(O+
n ) = C∗ ((uij)i,j=1,··· ,N | u = u, ut = u−1

)
. This quantum group contains ON ,

and the inclusion ON ⊂ O+
N is not an isomorphism.

Both classically and in the quantum framework the simplest symmetry groups are
(quantum) permutation groups, which can be viewed as the universal (quantum)
groups acting on a given finite set as has been proved by Wang [11] as a result
stating that the category C(Cn) of quantum groups acting on the n-point set admits
a universal object which is denoted by S+

n . But this statement is not true when
dealing with the space of n × n matrices Mn(R) and the category C(Mn(R)) does
not admit a universal object if n > 1 [11]. The problem is related to the fact that
there is a universal object in the category of compact quantum semigroups acting
on Mn(R), but it is not a compact quantum group.
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In infinite dimensional cases, as the last two statements above showed, in general
to establish the existence of a quantum symmetry group of some C∗-algebra B we
need to put some more structure onB. This has led to the development of the theory
of quantum isometry groups of non-commutative manifolds initiated by Goswami
and further developed by Banica, Bhowmick, and others.
Let Γ be a finitely generated discrete group with (minimal, symmetric) generating
set S = {γ1, . . . , γn} and I : Γ → N0 be the word-length function.

Theorem 1.2 (J. Bhowmick). The category of all compact quantum groups acting
on C∗(Γ) and ‘preserving the length’ has a universal object; we call it the quantum

isometry group of Γ̂ and denote by QISO+(Γ̂). The claim is that QISO+(Γ̂) is a
compact matrix quantum group with a fundamental representation [qt,s]t,s∈S, where
the elements {qt,s : t, s ∈ S} must satisfy the commutation relations implying that
the prescription α(λγ) =

∑
γ′∈S:I(γ)=I(γ′)

qγ′,γ ⊗ λγ′ , for γ ∈ Γ defines (inductively)

a unital ∗-homomorphism from C∗(Γ) to C(QISO+(Γ̂)⊗ C∗(Γ)).

In almost recent years T.Banica, B.Collins, S.Curran, R.Speicher (and others)
have initiated the study of a so-called liberation procedure. The idea can be (very
informally) described as follows:

(1) consider your favourite compact group of matrices G,
(2) find a presentation of C(G) in terms of finitely many generators, preferably

coefficients of a unitary representation,
(3) ‘liberate’ the generators, that is drop the assumption that they must com-

mute,
(4) show that the resulting family of algebraic relations determines an algebra

C(G) for a certain compact quantum group G. We usually write G = G+,

and we have the following result concerning the liberations of Hn.

Proposition 1.3 (Banica). The hyperoctahedral group HN has at least two natural
liberations, namely HN ⊂ H+

N and HN ⊂ ON , and neither of them is universal.

2. Is there a connection?

We have seen that the quantum permutation group S+
n can be viewed on one

hand as the quantum symmetry group of the n-point set, and on the other as the
liberation of the classical permutation group Sn. Now the question is that, are
there any more examples of that type?

Theorem 2.1 (Banica, Bhowmick). For Fn, the free group on n generators with

the usual generating set, QISO+(F̂n) can be described explicitly and turns out to
be the liberation of the classical group Tn oHn.

Remark 2.2. The above Theorem might look somehow mysterious, but we also

have Tn oHn = ISO(Tn) = ISO(Ẑn).

Which means that in fact here the object whose symmetry group we compute is
being liberated! In a procceture, by using a mixture of the free probabilistic quan-

tum group techniques we can compute the representation theory of QISO+(F̂n),
using the combinatorial language of (non-crossing) partitions, which in turn allows
us to prove results of the following types.
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Theorem 2.3 (Banica, Skalski). The quantum group QISO+(F̂n) is isomorphic
to the quantum group H+

n .

Proposition 2.4 (Razavinia, Haghighatdoost). The quantum isometry group QISO+(Y )
of any classical quantum space Y is classical.

3. Some open directions

(1) Geometric aspects. The groups Sn, On and their quantum (free) versions
S+
n , O+

n were involved in many other “classical vs. free” considerations.
Let us mention here the Poisson boundary results in [9], and the quantum
isometry groups in [7]. And it’s good to mention that the easy quantum
groups can lead to some new results here.

(2) Eigenvalue computations. The key results of Diaconis and Shahshahani
in [5], concerning Sn, On has been obtained as well by using Weingarten
functions and cumulants, and an extension to all easy quantum groups
has been constructed and the original philosophy suggested in [3], namely
the fact that “any result which holds for Sn, On should have an extension
to easy quantum groups”, has been illustrated. Now the question is that
“What are the eigenvalues of a random quantum group matrix?”.
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CONTACT PSEUDO-METRIC STRUCTURES ON TANGENT

SPHERE BUNDLES

NARGES GHAFFARZADEH AND MORTEZA FAGHFOURI

Abstract. In this paper, we introduce a contact pseudo-metric structure on
a tangent sphere bundle TεM . we prove that the tangent sphere bundle TεM
is (κ, µ)-contact pseudo-metric manifold if and only if the manifold M is of

constant sectional curvature. Also, we prove that this structure on the tangent
sphere bundle is K-contact iff the base manifold has constant curvature ε.

Key words and phrases: contact pseudo-metric structure, tangent sphere
bundle, unit tangent sphere bundle, Sasaki pseudo-metric.

1. Introduction

In 1956, S. Sasaki [7] introduced a Riemannian metric on tangent bundle TM and
tangent sphere bundle T1M over a Riemannian manifoldM . Thereafter, that metric
was called the Sasaki metric. In 1962, Dombrowski [3] also showed at each Z ∈
TM, TMZ = HTMZ ⊕V TMZ , where HTMZ and V TMZ orthogonal subspaces of
dimension n, called horizontal and vertical distributions, respectively. He defined
an almost Kählerian structure on TM and proved that it is Kählerian manifold if
M is flat. In the same year, Tachibana and Okumura [8] showed that the tangent
bundle space TM of any non-flat Riemannian space M always admits an almost
Kählerian structure, which is not Kählerian. Tashiro [10] introduced a contact
metric structure on the unit tangent sphere bundle T1M and prove that contact
metric structure on T1M is K-contact iff M has constant curvature 1, in which case
the structure is Sasakian.

Kowalski [5] computed the curvature tensor of Sasaki metric. Thus, on T1M, R(X,Y )ξ
can be computed by the formulas for the curvature of TM .

In [1], Blair et al. introduced (κ, µ)-contact Riemannian manifolds and proved
that, the tangent sphere bundle T1M is a (κ, µ)-contact Riemannian manifold iff
the base manifold M is of constant sectional curvature c.

Takahashi [9] introduced contact pseudo-metric structures (η, g), where is a con-
tact one-form and g a pseudo-Riemannian metric associated to it, are a natural
generalization of contact metric structures. Recently, contact pseudo-metric mani-
folds have been studied by Calvaruso and Perrone [2, 6] and authors of this paper
[4] introduce and study (κ, µ)-contact pseudo-metric manifolds.

In this paper, we suppose that (M, g) is pseudo-metric manifold and define
pseudo-metric on TM . Also, we introduce contact pseudo-metric structures (φ, ξ, η,G)
on TεM and prove that

R̄(X,Y )ξ = c(2ε− c){η(Y )X − η(X)Y } − 2c{η(Y )hX − η(X)hY }
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if and only if the base manifold M is of constant sectional curvature. That is, the
tangent sphere bundle TεM is a (κ, µ)-contact pseudo-metric manifold iff the base
manifold M is of constant sectional curvature c. Also, the contact pseudo-metric
structure (φ, ξ, η,G) on TεM is K-contact if and only if the base manifold (M, g)
has constant curvature ε.

2. Preliminaries

Let (M, g) be a pseudo-metric manifold and ∇ the associated Levi-Civita con-
nection and R = [∇,∇] − ∇[,] the curvature tensor. The tangent bundle of
M , denoted by TM , consists of pairs (x, u), where x ∈ M and u ∈ TxM ,( i.e.
TM = ∪x∈MTxM). The mapping π : TM → M,π(x, u) = x is the natural pro-
jection and for all (x, u) ∈ TM , the connection map K : TTM → TM is given by
K(X∗u) = ∇uX, where X : M → TM is a vector field on M [3].

The tangent space T(x,u)TM splits into the vertical subspace V TM(x,u) and the
horizontal subspaceHTM(x,u) are given by V TM(x,u) := kerπ∗|(x,u) andHTM(x,u) :=
kerK|(x,u) :

T(x,u)TM = V TM(x,u) ⊕HTM(x,u).

For every X ∈ TxM , there is a unique vector Xh ∈ HTM(x,u), such that π∗(X
h) =

X. It is called the horizontal lift of X to (x, u). Also, there is a unique vector
Xv ∈ V TM(x,u), such that Xv(df) = Xf for all f ∈ C∞(M). Xv is called the

vertical lift of X to (x, u). The maps X 7→ Xh between TxM and HTM(x,u), and
X 7→ Xv between TxM and V TM(x,u) are isomorphisms. Hence, every tangent

vector Z̄ ∈ T(x,u)TM can be decomposed Z̄ = Xh + Y v for uniquely determined
vectors X,Y ∈ TxM . The horizontal ( respectively, vertical) lift of a vector field X
on M to TM is the vector field Xh (respectively, Xv ) on M , whose value at the
point (x, u) is the horizontal (respectively, vertical) lift of Xx to (x, u).
A system of local coordinate (x1, . . . , xn) on an open subset U of M induces on
π−1(U) of TM a system of local coordinate (x̄1, . . . , x̄n;u1, . . . , un) as follows:

x̄i(x, u) = (xi ◦ π)(x, u) = xi(x), ui(x, u) = dxi(u) = uxi

for i = 1, . . . , n and (x, u) ∈ π−1(U). With respect to the induced local coordinate
system, the horizontal and vertical lifts of a vector field X = Xi ∂

∂xi on U are given
by

Xh = (Xi ◦ π) ∂

∂x̄i
− ub((XaΓi

ab) ◦ π)
∂

∂ui
, Xv = (Xi ◦ π) ∂

∂ui
,(2.1)

where Γi
jk are the local components of ∇, i.e., ∇ ∂

∂xj

∂
∂xk = Γi

jk
∂

∂xi . From (2.1), one

can easily calculate the brackets of vertical and horizontal lifts:

[Xh, Y h] = [X,Y ]h − v{R(X,Y )u},(2.2)

[Xh, Y v] = (∇XY )v, [Xv, Y v] = 0,(2.3)

for all X,Y ∈ Γ(TM). We use some notation, due to M. Sekizawa. Let T be a
tensor field of type (1, s) on M and X1, . . . , Xs−1 ∈ Γ(TM), the vertical vector
field v{T (X1, . . . , u, . . . , Xs−1)} on π−1(U) is given by

v{T (X1, . . . , u, . . . , Xs−1)} := ua(T (X1, . . . ,
∂

∂xa
, . . . , Xs−1))

v.
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If f is a smooth function on M and X is a vector field on M , then

Xh(f ◦ π) = (Xf) ◦ π, Xv(f ◦ π) = 0.(2.4)

In particular, we write X = Xi ∂
∂xi on U , and then we have

Xh(x̄i) = Xi ◦ π, Xv(x̄i) = 0.(2.5)

Further, from (2.1), we have

Xh(ui) = −ub(XaΓi
ab) ◦ π, Xv(ui) = Xi ◦ π.(2.6)

Let (M, g) be a pseudo-metric manifold. On the tangent bundle TM , we can define
a pseudo-metric g̃ to be

g̃(Xh, Y h) = g̃(Xv, Y v) = g(X,Y ) ◦ π, g̃(Xh, Y v) = 0(2.7)

for all X,Y ∈ Γ(TM). We call it Sasaki pseudo-metric. According (2.7), If
{E1, . . . , En} is an orthonormal frame field on U then {Ev

1 , . . . , E
v
n, E

h
1 , . . . , E

h
n}

is an orthonormal frame field on π−1(U). So, we have the following:

Proposition 2.1. If the index of g is ν then the index of the Sasaki pseudo-metric
g̃ is 2ν.

3. The curvature of the unit tangent sphere bundle with
pseudo-metric

Let (TM, g̃) be the tangent bundle of (M, g) endowed with its Sasaki pseudo-
metric. We consider the hypersurface TεM = {(x, u) ∈ TM |gx(u, u) = ε}, which
we call the unit tangent sphere bundle. A unit normal vector field N on TεM is
the (vertical) vector field N = ui ∂

∂ui = ui( ∂
∂xi )

v. N is independent of the choice
of local coordinates and it is defined globally on TM . We introduce some more
notation. If X ∈ TxM , we define the tangential lift of X to (x, u) ∈ TεM by

Xt
(x,u) = Xv

(x,u) − εg(X,u)N(x,u).(3.1)

Clearly, the tangent space to TεM at (x, u) is spanned by vectors of the form
Xh and Xt, where X ∈ TxM . Note that ut

(x,u) = 0. The tangential lift of a

vector field X on M to TεM is the vertical vector field Xt on TεM , whose value
at the point (x, u) ∈ TεM is the tangential lift of Xx to (x, u). For a tensor field
T of type (1, s) on M and X1, . . . , Xs−1 ∈ Γ(TM), we define the vertical vector
fields t{T (X1, . . . , u, . . . , Xs−1)} and t{T (X1, . . . , u, . . . , u, . . . , Xs−2)} on TεM in
the obvious way.
In what follows, we will give explicit expressions for the brackets of vector fields
on TεM involving tangential lifts, the Levi-Civita connection and the associated
curvature tensor of the induced metric ḡ on TεM .
First, for the brackets of vector fields on TεM involving tangential lifts, we obtain

[Xh, Y t] = (∇XY )t, [Xt, Y t] = εg(X,u)Y t − εg(Y, u)Xt.(3.2)

Next, we denote by ḡ the pseudo-metric induced on TεM from g̃ on TM as follows:

ḡ(Xh, Y h) = g(X,Y ), ḡ(Xh, Y t) = 0

ḡ(Xt, Y t) = g(X,Y )− εg(X,u)g(Y, u),
(3.3)
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4. The contact pseudo-metric structure of the unit tangent sphere
bundle

First, we give some basic facts on contact pseudo-metric structures. A pseudo-
Riemannian manifold (M2n+1, g) has a contact pseudo-metric structure if it admits
a vector field ξ, a one-form η and a (1, 1)-tensor field φ satisfying

η(ξ) = 1, φ2(X) = −X + η(X)ξ,

g(φX,φY ) = g(X,Y )− εη(X)η(Y ), dη(X,Y ) = g(X,φY ),
(4.1)

where ε = ±1 and X,Y ∈ Γ(TM). In this case, (M,φ, ξ, η, g) is called a contact
pseudo-metric manifold. In particular, the above conditions imply that the char-
acteristic curves, i.e., the integral curves of the characteristic vector field ξ, are
geodesics.
If ξ is in addition a Killing vector field with respect to g, then the manifold is said
to be a K-contact (pseudo-metric) manifold. Another characterizing property of
such contact pseudo-metric manifolds is the following:
geodesics which are orthogonal to ξ at one point, always remain orthogonal to ξ.
This yields a second special class of geodesics, the φ-geodesics.
Next, if (M2n+1, φ, ξ, η, g) is a contact pseudo-metric manifold satisfying the addi-
tional conditionNφ(X,Y )+2dη(X,Y )ξ = 0 is said to be Sasakian, whereNφ(X,Y ) =
φ2[X,Y ] + [φX,φY ]−φ[φX, Y ]−φ[X,φY ] is the Nijenhuis torsion tensor of φ. A
contact pseudo-metric structure is a Sasakian structure iff R satisfies

R(X,Y )ξ = η(Y )X − η(X)Y,(4.2)

In particular, one can show that the characteristic vector field ξ is a Killing vec-
tor field. Hence, a Sasakian manifold is also a K-contact manifold. In a con-
tact pseudo-metric manifold M2n+1(φ, ξ, η, g), defined the (1, 1)-tensor field h by
hX = 1

2 (Lξφ)(X), where L denotes the Lie derivative. The tensors h is self-adjoint
operator satisfying([2, 6])

hφ = −φh, hξ = 0, ∇Xξ = −εφX − φhX.(4.3)

(see [2, 6] for more details). If a contact pseudo-metric manifold satisfying

R(X,Y )ξ = εκ
(
η(Y )X − η(X)Y

)
+ εµ

(
η(Y )hX − η(X)hY

)
,

we call (κ, µ)-contact pseudo-metric manifold, where (κ, µ) ∈ R2. the (κ, µ)-contact
pseudo-metric manifold is Sasakian iff κ = ε and hence h= 0, by (4.2). (see [4] for
more details).
Take now an arbitrary pseudo-metric manifold (M, g). One can easily define an
almost complex structure J on TM in the following way:

JXh = Xv, JXv = −Xh(4.4)

for all vector fields X on M . From (2.2), and (2.3), we have the almost complex
structure J is integrable if and only if (M, g) is flat. From the definition (2.7) of the
pseudo-metric g̃ on TM , it follows immediately that (TM, g̃, J) is almost Hermitian.
Moreover, J defines an almost Kählerian structure. It is a Kähler manifold only
when (M, g) is flat[3].
Next, we consider the unit tangent sphere bundle (TεM, ḡ), which is isometrically
embedded as a hypersurface in (TM, g̃) with unit normal field N . Using the almost
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complex structure J on TM , we define a unit vector field ξ′, a one-form η′ and a
(1, 1)-tensor field φ′ on TεM by

ξ′ = −JN, JX = φ′X + η′(X)N.(4.5)

In local coordinates, ξ′, η′ and φ′ are described by

ξ′ = ui(
∂

∂xi
)h, η′(Xt) = 0, η′(Xh) = εg(X,u),

φ′(Xt) = −Xh + εg(X,u)ξ′, φ′(Xh) = Xt,
(4.6)

where X,Y ∈ Γ(TM). It is easily checked that these tensors satisfy the conditions
(4.1) excepts or the last one, where we find εḡ(X,φ′Y ) = 2dη′(X,Y ). So strictly
speaking, (φ′, ξ′, η′, ḡ) is not a contact pseudo-metric structure. Of course, the
difficulty is easily rectified and

η =
1

2
η′, ξ = 2ξ′, φ = εφ′, G =

1

4
ḡ

is taken as the standard contact pseudo-metric structure on TεM .

Theorem 4.1. The tangent sphere bundle TεM is (κ, µ)-contact pseudo-metric
manifold if and only if the base manifold M is of constant sectional curvature c and
κ = εc(2ε− c), µ = −2εc.

Theorem 4.2. The contact pseudo-metric structure (φ, ξ, η,G) on TεM is K-
contact if and only if the base manifold (M, g) has constant curvature ε, in which
case the structure on TεM is Sasakian.
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